This document summarizes Uber's experience building an enterprise knowledge graph. It notes that Uber has over 200,000 managed datasets and billions of trips served, making it an ideal testbed for a knowledge graph. However, it also outlines several lessons learned, including that real-world data is messy, an RDF-based approach is difficult, and property graphs alone are insufficient. The document advocates standardizing on shared vocabularies, fitting tools and data models to existing infrastructure, and collaborating across teams.