SlideShare a Scribd company logo
Biomedical Signal processing
Chapter 9 Computation of the Discrete
             Fourier Transform
                      Zhongguo Liu
                  Biomedical Engineering
    School of Control Science and Engineering, Shandong
                         University


 02/19/13              1
                       1      Zhongguo Liu_Biomedical Engineering_Shandong Univ
Chapter 9 Computation of the
     Discrete Fourier Transform
9.0 Introduction
9.1 Efficient Computation of Discrete Fourier Transform
9.2 The Goertzel Algorithm
9.3 decimation-in-time FFT Algorithms
9.4 decimation-in-frequency FFT Algorithms
9.5 practical considerations ๏ผˆ software realization)

2
9.0 Introduction
๏ตImplement a convolution of two sequences
 by the following procedure:
๏ต1. Compute the N-point DFT X 1 [ k ] and X 2 [ k ]
 of the two sequence x1 [ n] and x2 [ n]
๏ต2. Compute X 3 [ k ] = X 1 [ k ] X 2 [ k ]for   0 โ‰ค k โ‰ค N โˆ’1
๏ต3. Compute x3 [ n] = x1 [ n] N x2 [ n] the inverse
                                     as
 DFT of X 3 [ k ]
๏ตWhy not convolve the two sequences directly?

๏ตThere are efficient algorithms called Fast
  Fourier Transform (FFT) that can be orders of
3 magnitude more efficient than others.
9.1 Efficient Computation of Discrete
                Fourier Transform
    ๏ตThe DFT pair was given as
            N โˆ’1
                        โˆ’ j ( 2ฯ€ / N ) kn          1   N โˆ’1
                                                                    j ( 2ฯ€ / N ) kn
    X [ k ] = โˆ‘ x[n]e                       x[n] =     โˆ‘ X [ k] e
            n =0
                                                   N   k =0

    ๏ตBaseline for computational complexity:
     ๏ตEach DFT coefficient requires
        ๏ตN complex multiplications;
        ๏ตN-1 complex additions
     ๏ตAll N DFT coefficients require
        ๏ตN2 complex multiplications;
        ๏ตN(N-1) complex additions
4                                                                                 4
9.1 Efficient Computation of Discrete
              Fourier Transform
             N โˆ’1
                         โˆ’ j ( 2ฯ€ / N ) kn
     X [ k ] = โˆ‘ x[n]e
             n =0




๏ตComplexity in terms of real operations
    ๏ต4N2 real multiplications
    ๏ต2N(N-1) real additions (approximate 2N2)

5                                               5
9.1 Efficient Computation of
                    Discrete Fourier Transform
๏ตMost fast methods are based on Periodicity
 properties
  ๏ต( Periodicity in nโˆ’and /k;) Conjugate )symmetry( 2ฯ€ / N ) kn
  โˆ’ j 2ฯ€ / N ) k ( N โˆ’ n ) j ( 2ฯ€ N kN โˆ’ j ( 2ฯ€ / N k ( โˆ’ n ) j
    e                           =e                      e                       =e
            โˆ’ j ( 2ฯ€ / N ) kn        โˆ’ j ( 2ฯ€ / N ) k ( n + N )        j ( 2ฯ€ / N ) ( k + N ) n
        e                       =e                                =e
Re {            }                                                                             ]




6                                                                                                 6
9.2 The Goertzel Algorithm
 ๏ตMakes use of the periodicity j ( 2ฯ€ / N ) Nk
                              e                = e j 2ฯ€ k = 1
 ๏ตMultiply DFT equation with this factor
              j ( 2ฯ€ / N ) kN
                                N โˆ’1
                                               โˆ’ j ( 2ฯ€ / N ) rk     N โˆ’1
                                                                                     j ( 2ฯ€ / N ) k ( N โˆ’r )
 X [ k] = e                     โˆ‘ x[r ]e                           = โˆ‘ x[r ]e
                                r =0                                 r =0
                                        โˆž
                                                       j ( 2ฯ€ / N ) k ( n โˆ’r )
 ๏ตDefine            yk [ n ] =         โˆ‘ x[r ]e                                  u[ n โˆ’ r]
                                       r =โˆ’โˆž
 ๏ตusing x[n]=0 for n<0 and n>N-1
                            X [ k ] = yk [ n ] n = N
๏ตX[k] can be viewed as the output of a filter to the input x[n]
  ๏ตImpulse response of filter:                 j ( 2ฯ€ / N ) kn
                                      h[n] = e                 u [ n]
  ๏ตX[k] is the output of the filter at time n=N
7                                                                                                        7
9.2 The Goertzel Algorithm
๏ตGoertzel          j ( 2ฯ€ / N ) kn
          h[n] = e                 u[n] = W โˆ’ knu[n]
    Filter:                                  N


                        1
        Hk ( z ) =
                   1 โˆ’ WN k z โˆ’1
                         โˆ’


                        โˆ’
    yk [n] = yk [n โˆ’ 1]WN k + x[n], n = 0,1,..., N ,       yk [โˆ’1] = 0

 X [ k ] = yk [ n ] n = N , k = 0,1,..., N
                                                         N โˆ’1
                                                 X [ k ] = โˆ‘ x[n]WN
                                                                  kn

                                                         n =0
๏ตComputational complexity
  ๏ต4N real multiplications; 4N real additions
  ๏ตSlightly less efficient than the direct method
     ๏ตBut it avoids computation and storage of kn
                                             WN
8                                                                   8
Second Order Goertzel Filter
  ๏ตGoertzel Filter
                            1
    Hk ( z ) =              2ฯ€
                        j      k โˆ’1
                 1โˆ’ e       N z

๏ตMultiply both numerator and denominator
                                โˆ’ j 2ฯ€ k                 โˆ’j
                                                              2ฯ€
                                                                 k
                    1โˆ’ e            N
                                           z โˆ’1        1โˆ’ e   N
                                                                   z โˆ’1
Hk ( z ) =                                      =
           ๏ฃซ        2ฯ€
                         โˆ’1 ๏ฃถ๏ฃซ
                                  โˆ’ j k โˆ’1 ๏ฃถ
                                     2ฯ€                    2ฯ€ k โˆ’1 โˆ’2
             1 โˆ’ e N z รท๏ฃฌ 1 โˆ’ e N z รท 1 โˆ’ 2 cos N z + z
                  j    k
           ๏ฃฌ
           ๏ฃญ                ๏ฃธ๏ฃญ              ๏ฃธ
                                2ฯ€ k
   y[n] = โˆ’ y[n โˆ’ 2] + 2 cos          y[n โˆ’ 1] + x[n], n = 0,1,..., N
                                 N
     yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1] = X [ k ] , k = 0,1, ..., N
 9                                                                   9
Second Order Goertzel Filter
                              2ฯ€ k
 y[n] = โˆ’ y[n โˆ’ 2] + 2 cos         y[n โˆ’ 1] + x[n], n = 0,1,..., N
                               N
  yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1] = X [ k ] , k = 0,1, ..., N
 ๏ตComplexity for one DFT coefficient ( x(n) is complex
   sequence).
    ๏ตPoles: 2N real multiplications and 4N real additions
    ๏ตZeros: Need to be implement only once:
      ๏ต4 real multiplications and 4 real additions
 ๏ตComplexity for all DFT coefficients
    ๏ตEach pole is used for two DFT coefficients
    ๏ตApproximately N2 real multiplications and 2N2 real
     additions
10                                                    10
Second Order Goertzel Filter

                            2ฯ€ k
  y[n] = โˆ’ y[n โˆ’ 2] + 2 cos      y[n โˆ’ 1] + x[n], n = 0,1,..., N
                             N

  yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1]   = X [ k ] , k = 0,1, ..., N


๏ตIf do not need to evaluate all N DFT coefficients
 ๏ตGoertzel Algorithm is more efficient than FFT
    if
 less than M DFT coefficients are needed,M <
    log2N
 11                                                                 11
9.3 decimation-in-time FFT Algorithms

 ๏ตMakes use of both periodicity and symmetry
 ๏ตConsider special case of N an integer power of
  2
 ๏ตSeparate x[n] into two sequence of length N/2
   ๏ตEven indexed samples in the first sequence
   ๏ตOdd indexed samples in the other sequence
           N โˆ’1
                                 โˆ’ j ( 2ฯ€ / N ) kn
     X [ k ] = โˆ‘ x[n]e
                  n =0

                         โˆ’ j ( 2ฯ€ / N ) kn                 โˆ’ j ( 2ฯ€ / N ) kn
     =   โˆ‘ x[n]e
         n even
                                             +   โˆ‘ x[n]e
                                                 n odd
12                                                                        12
9.3 decimation-in-time FFT Algorithms
                                  โˆ’ j ( 2ฯ€ / N ) kn                             โˆ’ j ( 2ฯ€ / N ) kn
  X [ k] =         โˆ‘ x[n]e                                 +   โˆ‘ x[n]e
                n even                                         n odd
 ๏ตSubstitute variables n=2r for n even and n=2r+1 for odd

             N / 2 โˆ’1                      N / 2 โˆ’1
 X [ k] =     โˆ‘         x[2r ]W 2 rk
                                N      +    โˆ‘ x[2r + 1]W               ( 2 r +1) k
                                                                       N
              r =0                          r =0
           N /2 โˆ’1                             N /2 โˆ’1
       =    โˆ‘
            r =0
                     x[2r ]WN /2 + WN
                            rk      k
                                                โˆ‘
                                                r =0
                                                          x[2r + 1]WN / 2
                                                                    rk




       = G[ k] +W H [ k]   k                                โˆ’ j 2ฯ€ 2            โˆ’ j 2ฯ€
                           N                   W      2
                                                      N   =e N             =   e N /2    = WN /2
๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence

13                                                                                           13
9.3 decimation-in-time FFT Algorithms
               N /2 โˆ’1                        N /2 โˆ’1
   X [ k] =     โˆ‘ x[2r ]W       rk
                                N /2   +W k
                                          N    โˆ‘ x[2r + 1]W        rk
                                                                   N /2
                r =0                           r =0


          = G[ k] +W H [ k]k
                                               โˆ’ j 2ฯ€ 2 rk      โˆ’ j 2ฯ€ rk
                           N
                                              e N            = e N /2       = WNrk/2
                       N โˆ’1
          k = 0,1,...,                            k = 0,1,..., N
                        2
         ๏ฃฎ    N๏ฃน                            ๏ฃฎ   N๏ฃน
       G ๏ฃฏk + ๏ฃบ = G [ k ]                 H ๏ฃฏk + ๏ฃบ = H [ k ]
         ๏ฃฐ     2๏ฃป                           ๏ฃฐ   2๏ฃป
๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence

 14                                                                            14
8-point DFT using decimation-in-time




15                                 Figure 9.3
computational complexity
๏ตTwo N/2-point DFTs
  ๏ต2(N/2)2 complex
   multiplications
  ๏ต2(N/2)2 complex additions
๏ตCombining the DFT outputs
  ๏ตN complex multiplications
  ๏ตN complex additions
๏ตTotal complexity
  ๏ตN2/2+N complex
   multiplications
 16 2
  ๏ต                                   16
9.3 decimation-in-time FFT Algorithms

๏ตRepeat same process ,
 Divide N/2-point DFTs
 into
  ๏ตTwo N/4-point DFTs
     ๏ตCombine outputs

     N=8




17                                      17
9.3 decimation-in-time FFT Algorithms
๏ตAfter two steps of decimation in
 time




 ๏ตRepeat until weโ€™re left with two-point DFTโ€™s
18                                               18
9.3 decimation-in-time FFT Algorithms
 ๏ตflow graph for 8-point decimation in time




๏ตComplexity:
19 ๏ตNlog2N complex multiplications and additions   19
Butterfly Computation

    ๏ตFlow graph constitutes of butterflies




๏ตWe can implement each butterfly with one multiplication



๏ตFinal complexity for decimation-in-time FFT
  ๏ต(N/2)log2N complex multiplications and additions
 20                                                        20
9.3 decimation-in-time FFT Algorithms
   ๏ตFinal flow graph for 8-point decimation in
    time




๏ตComplexity:
  ๏ต(Nlog2N)/2 complex multiplications and Nlog2N additions
 21                                                          21
9.3.1 In-Place Computation ๅŒๅ€่ฟ
                        ็ฎ—
๏ตDecimation-in-time flow graphs require two sets of
 registers
    ๏ตInput and output for each stage



    X 0 [ 0] = x [ 0]    x [ 0]   X 2 [ 0]   X [ 0]
    X 0 [ 1] = x [ 4]    x [ 4]   X 2 [ 1]   X [ 1]
    X 0 [ 2] = x [ 2]    x [ 2]   X 2 [ 2]   X [ 2]
    X 0 [ 3] = x [ 6]    x [ 6]   X 2 [ 3]   X [ 3]
    X 0 [ 4] = x [ 1]    x [ 1]   X 2 [ 4]   X [ 4]
    X 0 [ 5] = x [ 5 ]   x [ 5]   X 2 [ 5]   X [ 5]
    X 0 [ 6] = x [ 3]    x [ 3]   X 2 [ 6]   X [ 6]
 22X 0 [ 7] = x [ 7]     x [ 7]   X 2 [ 7]   X [ 7]   22
9.3.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ—

๏ตNote the arrangement of the input indices
    ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰

 X 0 [ 0] = x [ 0] โ†” X 0 [ 000] = x [ 000] x [ 0]            X [ 0]
 X 0 [ 1] = x [ 4] โ†” X 0 [ 001] = x [ 100]     x [ 4]        X [ 1]
 X 0 [ 2] = x [ 2] โ†” X 0 [ 010] = x [ 010] x [ 2]            X [ 2]
 X 0 [ 3] = x [ 6] โ†” X 0 [ 011] = x [ 110]     x [ 6]        X [ 3]
 X 0 [ 4] = x [ 1] โ†” X 0 [ 100] = x [ 001]     x [ 1]        X [ 4]
 X 0 [ 5] = x [ 5] โ†” X 0 [ 101] = x [ 101]     x [ 5]        X [ 5]
 X 0 [ 6] = x [ 3] โ†” X 0 [ 110] = x [ 011]     x [ 3]        X [ 6]
 X 0 [ 7 ] = x [ 7 ] โ†” X 0 [ 111] = x [ 111]   x [ 7]        X [ 7]
 23                                                     23
cause of bit-reversed order

                                binary coding for
                                position ๏ผš
                                000
                                001

                                010
                                011

                                100
                                101

                                110
                                111
     must padding 0 to                Figure 9.13
24         N = 2M
9.3.2 Alternative forms
๏ตNote the arrangement of the input indices
    ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰

 X 0 [ 0] = x [ 0] โ†” X 0 [ 000] = x [ 000] x [ 0]            X [ 0]
 X 0 [ 1] = x [ 4] โ†” X 0 [ 001] = x [ 100]     x [ 4]        X [ 1]
 X 0 [ 2] = x [ 2] โ†” X 0 [ 010] = x [ 010] x [ 2]            X [ 2]
 X 0 [ 3] = x [ 6] โ†” X 0 [ 011] = x [ 110]     x [ 6]        X [ 3]
 X 0 [ 4] = x [ 1] โ†” X 0 [ 100] = x [ 001]     x [ 1]        X [ 4]
 X 0 [ 5] = x [ 5] โ†” X 0 [ 101] = x [ 101]     x [ 5]        X [ 5]
 X 0 [ 6] = x [ 3] โ†” X 0 [ 110] = x [ 011]     x [ 3]        X [ 6]
 X 0 [ 7 ] = x [ 7 ] โ†” X 0 [ 111] = x [ 111]   x [ 7]        X [ 7]
 25                                                     25
9.3.2 Alternative forms




      strongpoint ๏ผš in-place computations
      shortcoming ๏ผš non-sequential access of data
                                                    Figure 9.14
26
Figure 9.15




     shortcoming ๏ผš not in-place computation
                  non-sequential access of data
27
Figure 9.16




     shortcoming ๏ผš not in-place computation
     strongpoint: sequential access of data
28
9.3 decimation-in-time FFT Algorithms
                                  โˆ’ j ( 2ฯ€ / N ) kn                             โˆ’ j ( 2ฯ€ / N ) kn
  X [ k] =         โˆ‘ x[n]e                                 +   โˆ‘ x[n]e
                n even                                         n odd
 ๏ตSubstitute variables n=2r for n even and n=2r+1 for odd

             N / 2 โˆ’1                      N / 2 โˆ’1
 X [ k] =     โˆ‘         x[2r ]W 2 rk
                                N      +    โˆ‘ x[2r + 1]W               ( 2 r +1) k
                                                                       N
              r =0                          r =0
                                                                                     Review
           N /2 โˆ’1                             N /2 โˆ’1
       =    โˆ‘
            r =0
                     x[2r ]WN /2 + WN
                            rk      k
                                                โˆ‘
                                                r =0
                                                          x[2r + 1]WN / 2
                                                                    rk




       = G[ k] +W H [ k]   k                                โˆ’ j 2ฯ€ 2            โˆ’ j 2ฯ€
                           N                   W      2
                                                      N   =e N             =   e N /2    = WN /2
๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence

29                                                                                           29
9.3.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ—
     ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰
X 0 [ 000] = x [ 000] x [ 0]              X [ 0]
X 0 [ 001] = x [ 100] x [ 4]              X [ 1]
X 0 [ 010] = x [ 010] x [ 2]              X [ 2]
X 0 [ 011] = x [ 110] x [ 6]              X [ 3]
X 0 [ 100] = x [ 001] x [ 1]              X [ 4]
X 0 [ 101] = x [ 101]   x [ 5]            X [ 5]
X 0 [ 110] = x [ 011] x [ 3]              X [ 6]
X 0 [ 111] = x [ 111]   x [ 7]            X [ 7]

  30                                       30
9.3.2 Alternative forms




      strongpoint ๏ผš in-place computations
      shortcoming ๏ผš non-sequential access of data
                                                    Figure 9.14
31
9.4 Decimation-In-Frequency FFT Algorithm
                                                        N โˆ’1
   ๏ตThe DFT equation                     X [ k ] = โˆ‘ x[n]WN
                                                          nk

                                                        n =0
   ๏ตSplit the DFT equation into even and odd frequency indexes

               N โˆ’1                        N / 2 โˆ’1                   N โˆ’1
      X [ 2r ] = โˆ‘ x[n]WN 2 r =
                        n
                                            โˆ‘         x[n]WN 2 r +
                                                           n
                                                                      โˆ‘         x[n]WN 2 r
                                                                                     n

               n =0                         n =0                     n= N / 2
                          N /2 โˆ’1                      N / 2 โˆ’1
๏ตSubstitute
 variables
                  =        โˆ‘ x[n]W
                          n =0
                                           n2r
                                           N       +    โˆ‘ x[n + N / 2]W
                                                        n =0
                                                                                  ( n + N /2 ) 2 r
                                                                                  N

                          N / 2 โˆ’1
                      =    โˆ‘ ( x[n] + x[n + N / 2]) W
                           n =0
                                                                      nr
                                                                      N /2

                          N /2 โˆ’1
                      =    โˆ‘               rn
                                     g (n)WN / 2
 32                         n =0
                                                                                              32
9.4 Decimation-In-Frequency FFT Algorithm
                                                             N โˆ’1
  ๏ตThe DFT equation                          X [ k ] = โˆ‘ x[n]WN
                                                              nk

                                                               n =0
                  N โˆ’1                           N /2 โˆ’1                                  N โˆ’1
X [ 2r + 1] = โˆ‘ x[n]W           n (2 r +1)
                                N            =   โˆ‘         x[n]W       n (2 r +1)
                                                                       N            +     โˆ‘        x[n]W     n (2 r +1)
                                                                                                             N
                  n=0                               n=0                                 n = N /2
      N /2 โˆ’1                             N /2 โˆ’1
  =    โˆ‘
       n =0
                 x[n]W   n (2 r +1)
                         N            +      โˆ‘ x[n + N / 2]W
                                             n =0
                                                                                    N
                                                                                        ( n + N / 2 ) (2 r +1)

      N /2 โˆ’1
  =    โˆ‘ ( x[n] โˆ’ x[n + N / 2]) W
       n =0
                                                           n (2 r +1)
                                                           N

      N / 2 โˆ’1                                                                N /2 โˆ’1
  =    โˆ‘ ( x[n] โˆ’ x[n + N / 2]) W W                        n
                                                           N
                                                                  rn
                                                                  N /2
                                                                          =    โˆ‘n =0
                                                                                          h(n)WN WNn2
                                                                                               n  r
                                                                                                    /
       n =0
                                                                       N
  n ( 2 r +1)                                                            (2 r +1)
W N              =W W =W W
                     2 rn
                     N
                            n
                            N
                                          rn
                                          N /2
                                                     n
                                                     N          W      2
                                                                                    = WNNrWNN / 2 = โˆ’1
33                                                                    N
                                                                                                                 33
decimation-in-frequency decomposition of an N-
            point DFT to N/2-point DFT




             N /2 โˆ’1                                      N /2 โˆ’1
X [ 2r ] =    โˆ‘        ( x[n] + x[n + N / 2]) WN /2=
                                               nr
                                                           โˆ‘              rn
                                                                    g (n)WN /2
              n = 0 /2 โˆ’1
                  N                                      n =0       N /2 โˆ’1
X [ 2r + 1] =
 34               โˆ‘
                  n =0
                            ( x[n] โˆ’ x[n + N / 2]) WN W
                                                    n  rn
                                                       N /2
                                                              =      โˆ‘
                                                                     n =0
                                                                              h(n)WN WNn2
                                                                                   n  r

                                                                                     34
                                                                                        /
decimation-in-frequency decomposition of an 8-
            point DFT to four 2-point DFT




                 N / 4 โˆ’1                                          N / 4 โˆ’1
X [ 2* 2 s ] =    โˆ‘         [ g (n) + g (n + N / 4)]WNsn =
                                                       /4           โˆ‘          p(n)WNsn
                                                                                      /4
                  n =0                                              n =0
                      N / 4 โˆ’1                                         N /4 โˆ’1
X [ 2*(2 s + 1) ] =      โˆ‘       [ g (n) โˆ’ g (n + N / 4)]W W
                                                       2n   sn
                                                                   =    โˆ‘        q ( n)WN nWNn
                                                                                        2   s
 35                      n =0
                                                       N    N /4
                                                                        n =0              35
                                                                                              /4
2-point DFT




     X v ( p ) = X vโˆ’1 ( p ) + X v โˆ’1 (q )

     X v (q ) = ๏ฃฎ X v โˆ’1 ( p ) โˆ’ X vโˆ’1 (q ) ๏ฃน W80
                ๏ฃฐ                           ๏ฃป       when N = 8

36                                                         36
N /2 โˆ’1                                                  N /2 โˆ’1
X [ 2r ] =    โˆ‘ ( x[n] + x[n + N / 2])                 nr
                                                      WN /2       =    โˆ‘              rn
                                                                                g (n)WN /2
              n =0                                                     n =0


                          N /4 โˆ’1                      N /2 โˆ’1
      X [ 2* 2 s ] =       โˆ‘        g (n)WN /2 +
                                          2 sn
                                                        โˆ‘               2 sn
                                                                  g (n)WN /2
                           n =0                        n = N /4
          N /4 โˆ’1                     N /4 โˆ’1
      =    โˆ‘
           n =0
                    g (n)WN /2 +
                          2 sn
                                       โˆ‘
                                       n =0
                                                g (n + N / 4)WN /2( n + N /4)
                                                              2s



          N /4 โˆ’1                     N /4 โˆ’1
      =    โˆ‘ g (n)W
           n =0
                            sn
                           N /4   +    โˆ‘ g (n + N / 4)W
                                       n =0
                                                                        sn
                                                                       N /4

          N /4 โˆ’1                                                     N /4 โˆ’1
      =    โˆ‘ [ g (n) + g (n + N / 4)]W                  sn
                                                        N /4
                                                                  =    โˆ‘
                                                                       n =0
                                                                                p(n)WNsn
                                                                                       /4
           n =0


 37
N /2 โˆ’1                                                 N /2 โˆ’1
X [ 2r ] =       โˆ‘ ( x[n] + x[n + N / 2])                nr
                                                        WN /2       =    โˆ‘              rn
                                                                                  g (n)WN /2
                 n =0                                                    n =0
                           N /2 โˆ’1
  X [ 2*(2 s + 1) ] =       โˆ‘        g (n)WN /2 +1) n
                                           (2 s

                            n =0
     N /4 โˆ’1                         N /2 โˆ’1
 =    โˆ‘
      n =0
               g (n)WN /2+1) n +
                     (2 s
                                      โˆ‘
                                   n= N / 4
                                               g (n)WN /2 +1) n
                                                     (2 s



     N /4 โˆ’1                           N /4 โˆ’1
 =    โˆ‘
      n =0
               g (n)WNsn WN /2 +
                       /4
                          n
                                        โˆ‘
                                        n =0
                                                 g (n + N / 4)WN /2+1)( n + N /4)
                                                               (2 s



     N /4 โˆ’1                          N /4 โˆ’1
 =    โˆ‘
      n =0
               g (n)WNsn WN n +
                       /4
                          2
                                       โˆ‘
                                       n =0
                                                g (n + N / 4)WNsn WN nWN / 2+1) N /4
                                                                /4
                                                                   2   (2 s



     N /4 โˆ’1                                                        N /4 โˆ’1

 =    โˆ‘ [ g (n) โˆ’ g (n + N / 4)]W                  2n
                                                   N W   sn
                                                         N /4
                                                                =    โˆ‘
                                                                     n =0
                                                                              q (n)WN nWNsn
                                                                                    2
                                                                                          /4
      n =0
 38                                                     WN /2 +1) N /4 = WNsN /2WNN/2 = โˆ’1
                                                         (2 s
                                                                            /2
                                                                                    /4
N /4 โˆ’1
     X [ 2* 2 s ] =         โˆ‘        p (n)WNsn
                                             /4
                            n =0

                                   N /4 โˆ’1
     X [ 2* 2* 2t ] =               โˆ‘        p (n)W     2 tn
                                                        N /4
                                    n =0
         N /8 โˆ’1                           N /4 โˆ’1
     =    โˆ‘
          n =0
                   p (n)W    2 tn
                             N /4    +      โˆ‘
                                         n = N /8
                                                     p (n)W    2 tn
                                                               N /4


         N /8 โˆ’1                         N /8 โˆ’1
     =   โˆ‘n =0
                   p (n)W   2 tn
                            N /4     +     โˆ‘
                                           n =0
                                                     p(n + N / 8)W    2 t ( n + N /8)
                                                                      N /4


             N /8 โˆ’1
         =    โˆ‘  n =0
                        [ p(n) + p (n + N / 8)]WN /8
                                                tn




                  = p(n) + p (n + 1)                           when N = 8
39
N /4 โˆ’1
        X [ 2* 2 s ] =      โˆ‘        p (n)WNsn
                                             /4
                            n =0
                                      N /4 โˆ’1
    X [ 2* 2*(2t + 1) ] =              โˆ‘         p(n)WN /4+1) n
                                                      (2 t

                                       n =0
        N /8 โˆ’1                         N /4 โˆ’1
    =    โˆ‘n =0
                  p (n)WN /4+1) n +
                        (2 t
                                         โˆ‘
                                       n = N /8
                                                  p (n)WN / 4+1) n
                                                        (2 t


        N /8 โˆ’1                        N /8 โˆ’1
 =      โˆ‘n =0
                  p (n)WN /4+1) n +
                        (2 t
                                        โˆ‘
                                        n =0
                                                 p (n + N / 8)WN /4+1)( n + N /8)
                                                               (2 t


        N /8 โˆ’1                           N /8โˆ’1
    =    โˆ‘
        n =0
                  p (n)WN /4WN /4 +
                        2 tn n
                                              โˆ‘
                                              n =0
                                                     p (n + N / 8)WN /4WN /4WN /4+1) N /8
                                                                   2 tn n    (2 t


    N /8 โˆ’1
=   โˆ‘       [ p(n) โˆ’ p(n + N / 8)]WN /8WN n
                                   tn   4

     n =0                                                    WN(2/4+1) N /8 = WNtN /4WNN/4 = โˆ’ 1
                                                                  t
                                                                                 /4
                                                                                         /8


= [ p (n) โˆ’ p (n + 1)]W80 when N = 8
40
Final flow graph for 8-point DFT decimation
                      in frequency




41                                            41
9.4.1 In-Place Computation ๅŒๅ€่ฟ
                     ็ฎ—
DIF
FFT




DIT FFT


42                                    42
9.4.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ—


DIF
FFT




DIT FFT


43                                       43
9.4.2 Alternative forms
๏ตdecimation-in-frequecy Butterfly Computation




๏ตdecimation-in-time Butterfly Computation




 44                                         44
The DIF FFT is the transpose of the DIT FFT


DIF
FFT




DIT FFT


45                                            45
9.4.2 Alternative forms

DIF
FFT




DIT FFT


46
9.4.2 Alternative forms

DIF
FFT




DIT FFT


47
Figure 9.24 erratum
                           x [ 0]
                           x [ 4]
                           x [ 2]
                           x [ 6]
                           x [ 1]
                           x [ 5]
                           x [ 3]
                           x [ 7]
48
9.4.2 Alternative forms

DIF
FFT




DIT FFT


49
Chapter 9 HW
          ๏ต9.1, 9.2, 9.3,




50
 50   ่ฟ”   ๅ›ž02/19/13   ไธŠไธ€้กต
                              Zhongguo Liu_Biomedical Engineering_Shandong
                            ไธ‹ไธ€้กต                  Univ.
Ad

More Related Content

What's hot (20)

Dif fft
Dif fftDif fft
Dif fft
Saleem Almaqashi
ย 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
Fernando Ojeda
ย 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
ย 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
SARITHA REDDY
ย 
Convolution
ConvolutionConvolution
Convolution
sridharbommu
ย 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
Sarang Joshi
ย 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
op205
ย 
Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report
Alamgir Hossain
ย 
Z transform
 Z transform Z transform
Z transform
hemakankshini
ย 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
Agam Goel
ย 
Properties of dft
Properties of dftProperties of dft
Properties of dft
tamil arasan
ย 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Amr E. Mohamed
ย 
Circular Convolution
Circular ConvolutionCircular Convolution
Circular Convolution
Sarang Joshi
ย 
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
ย 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
Dr Naim R Kidwai
ย 
quantization
quantizationquantization
quantization
aniruddh Tyagi
ย 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
Waqas Afzal
ย 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
SWATI MISHRA
ย 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
Amr E. Mohamed
ย 
Pn sequence
Pn sequencePn sequence
Pn sequence
Darshil Shah
ย 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
Fernando Ojeda
ย 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
ย 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
SARITHA REDDY
ย 
Convolution
ConvolutionConvolution
Convolution
sridharbommu
ย 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
Sarang Joshi
ย 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
op205
ย 
Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report
Alamgir Hossain
ย 
Z transform
 Z transform Z transform
Z transform
hemakankshini
ย 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
Agam Goel
ย 
Properties of dft
Properties of dftProperties of dft
Properties of dft
tamil arasan
ย 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Amr E. Mohamed
ย 
Circular Convolution
Circular ConvolutionCircular Convolution
Circular Convolution
Sarang Joshi
ย 
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
ย 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
Waqas Afzal
ย 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
SWATI MISHRA
ย 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
Amr E. Mohamed
ย 
Pn sequence
Pn sequencePn sequence
Pn sequence
Darshil Shah
ย 

Viewers also liked (20)

DIT-Radix-2-FFT in SPED
DIT-Radix-2-FFT in SPEDDIT-Radix-2-FFT in SPED
DIT-Radix-2-FFT in SPED
Ajay Kumar
ย 
MRI Data Processing and Reconstruction via Chirp z-Transform
MRI Data Processing and Reconstruction via Chirp z-TransformMRI Data Processing and Reconstruction via Chirp z-Transform
MRI Data Processing and Reconstruction via Chirp z-Transform
HuimingDong
ย 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
MIHIR RANJAN SAHOO
ย 
Fft ppt
Fft pptFft ppt
Fft ppt
Puneet Gupta
ย 
Use Of DFT In Power Spectral Estimation
Use Of DFT In Power Spectral EstimationUse Of DFT In Power Spectral Estimation
Use Of DFT In Power Spectral Estimation
gaikwad patil coe,nagpur
ย 
Hadoop at Bloomberg:Medium data for the financial industry
Hadoop at Bloomberg:Medium data for the financial industryHadoop at Bloomberg:Medium data for the financial industry
Hadoop at Bloomberg:Medium data for the financial industry
Matthew Hunt
ย 
Dsp lecture vol 2 dft & fft
Dsp lecture vol 2 dft & fftDsp lecture vol 2 dft & fft
Dsp lecture vol 2 dft & fft
เฆธเฆฟเฆฐเฆพเฆœเงเฆฎ เฆฎเงเฆจเง€เฆฐ เฆชเฆพเฆฐเฆญเง‡เฆœ
ย 
Introduction to Genetic Algorithms and Evolutionary Computation
Introduction to Genetic Algorithms and Evolutionary ComputationIntroduction to Genetic Algorithms and Evolutionary Computation
Introduction to Genetic Algorithms and Evolutionary Computation
Aleksander Stensby
ย 
Power Point Presentation on Golkonda Fourt
Power Point Presentation on Golkonda FourtPower Point Presentation on Golkonda Fourt
Power Point Presentation on Golkonda Fourt
Anand Yadav
ย 
Xin Yao: "What can evolutionary computation do for you?"
Xin Yao: "What can evolutionary computation do for you?"Xin Yao: "What can evolutionary computation do for you?"
Xin Yao: "What can evolutionary computation do for you?"
ieee_cis_cyprus
ย 
Evolutionary computation and_applications
Evolutionary computation and_applicationsEvolutionary computation and_applications
Evolutionary computation and_applications
ddawar
ย 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC Circuit
Univ of Jember
ย 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)
balaji kumar
ย 
Introduction to Machine Learning with Spark
Introduction to Machine Learning with SparkIntroduction to Machine Learning with Spark
Introduction to Machine Learning with Spark
datamantra
ย 
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
Taejun Kim
ย 
Bionic Arm Using EMG Processing
Bionic Arm Using EMG ProcessingBionic Arm Using EMG Processing
Bionic Arm Using EMG Processing
biomedicz
ย 
Data encoding
Data encodingData encoding
Data encoding
Akash Bhandari
ย 
Introduction to ML with Apache Spark MLlib
Introduction to ML with Apache Spark MLlibIntroduction to ML with Apache Spark MLlib
Introduction to ML with Apache Spark MLlib
Taras Matyashovsky
ย 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
Sathiya kumar
ย 
Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)
dharmesh nakum
ย 
DIT-Radix-2-FFT in SPED
DIT-Radix-2-FFT in SPEDDIT-Radix-2-FFT in SPED
DIT-Radix-2-FFT in SPED
Ajay Kumar
ย 
MRI Data Processing and Reconstruction via Chirp z-Transform
MRI Data Processing and Reconstruction via Chirp z-TransformMRI Data Processing and Reconstruction via Chirp z-Transform
MRI Data Processing and Reconstruction via Chirp z-Transform
HuimingDong
ย 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
MIHIR RANJAN SAHOO
ย 
Use Of DFT In Power Spectral Estimation
Use Of DFT In Power Spectral EstimationUse Of DFT In Power Spectral Estimation
Use Of DFT In Power Spectral Estimation
gaikwad patil coe,nagpur
ย 
Hadoop at Bloomberg:Medium data for the financial industry
Hadoop at Bloomberg:Medium data for the financial industryHadoop at Bloomberg:Medium data for the financial industry
Hadoop at Bloomberg:Medium data for the financial industry
Matthew Hunt
ย 
Introduction to Genetic Algorithms and Evolutionary Computation
Introduction to Genetic Algorithms and Evolutionary ComputationIntroduction to Genetic Algorithms and Evolutionary Computation
Introduction to Genetic Algorithms and Evolutionary Computation
Aleksander Stensby
ย 
Power Point Presentation on Golkonda Fourt
Power Point Presentation on Golkonda FourtPower Point Presentation on Golkonda Fourt
Power Point Presentation on Golkonda Fourt
Anand Yadav
ย 
Xin Yao: "What can evolutionary computation do for you?"
Xin Yao: "What can evolutionary computation do for you?"Xin Yao: "What can evolutionary computation do for you?"
Xin Yao: "What can evolutionary computation do for you?"
ieee_cis_cyprus
ย 
Evolutionary computation and_applications
Evolutionary computation and_applicationsEvolutionary computation and_applications
Evolutionary computation and_applications
ddawar
ย 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC Circuit
Univ of Jember
ย 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)
balaji kumar
ย 
Introduction to Machine Learning with Spark
Introduction to Machine Learning with SparkIntroduction to Machine Learning with Spark
Introduction to Machine Learning with Spark
datamantra
ย 
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
ํ…์„œํ”Œ๋กœ ๊ฑธ์Œ๋งˆ (TensorFlow Tutorial)
Taejun Kim
ย 
Bionic Arm Using EMG Processing
Bionic Arm Using EMG ProcessingBionic Arm Using EMG Processing
Bionic Arm Using EMG Processing
biomedicz
ย 
Data encoding
Data encodingData encoding
Data encoding
Akash Bhandari
ย 
Introduction to ML with Apache Spark MLlib
Introduction to ML with Apache Spark MLlibIntroduction to ML with Apache Spark MLlib
Introduction to ML with Apache Spark MLlib
Taras Matyashovsky
ย 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
Sathiya kumar
ย 
Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)
dharmesh nakum
ย 
Ad

Similar to Chapter 9 computation of the dft (20)

03 image transform
03 image transform03 image transform
03 image transform
Rumah Belajar
ย 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
grssieee
ย 
Dft
DftDft
Dft
Senthil Kumar
ย 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
Tapio Salminen
ย 
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
bermudez_jcm
ย 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: MixturesCVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
zukun
ย 
Semi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped MatricesSemi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped Matrices
Lossian Barbosa Bacelar Miranda
ย 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
ย 
Munich07 Foils
Munich07 FoilsMunich07 Foils
Munich07 Foils
Antonini
ย 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
srkrishna341
ย 
Decimation in Time
Decimation in TimeDecimation in Time
Decimation in Time
SURAJ KUMAR SAINI
ย 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
clayqn88
ย 
Ch13
Ch13Ch13
Ch13
douglaslyon
ย 
Lecture 9 f17
Lecture 9 f17Lecture 9 f17
Lecture 9 f17
Eric Cochran
ย 
Band structure
Band structureBand structure
Band structure
nirupam12
ย 
lec08_computation_of_DFT.pdf
lec08_computation_of_DFT.pdflec08_computation_of_DFT.pdf
lec08_computation_of_DFT.pdf
shannlevia123
ย 
lec_3.pdf
lec_3.pdflec_3.pdf
lec_3.pdf
AmirEWIDA1
ย 
Unit ii
Unit iiUnit ii
Unit ii
Chetan Selukar
ย 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
roykousik2020
ย 
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
PrajwalTalwalkar
ย 
03 image transform
03 image transform03 image transform
03 image transform
Rumah Belajar
ย 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
grssieee
ย 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
Tapio Salminen
ย 
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
bermudez_jcm
ย 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: MixturesCVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
zukun
ย 
Munich07 Foils
Munich07 FoilsMunich07 Foils
Munich07 Foils
Antonini
ย 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
srkrishna341
ย 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
clayqn88
ย 
Lecture 9 f17
Lecture 9 f17Lecture 9 f17
Lecture 9 f17
Eric Cochran
ย 
Band structure
Band structureBand structure
Band structure
nirupam12
ย 
lec08_computation_of_DFT.pdf
lec08_computation_of_DFT.pdflec08_computation_of_DFT.pdf
lec08_computation_of_DFT.pdf
shannlevia123
ย 
lec_3.pdf
lec_3.pdflec_3.pdf
lec_3.pdf
AmirEWIDA1
ย 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
roykousik2020
ย 
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
PrajwalTalwalkar
ย 
Ad

Recently uploaded (20)

Download Chimera Tool Setup V42.47.0924 [Latest Version]
Download Chimera Tool Setup V42.47.0924 [Latest Version]Download Chimera Tool Setup V42.47.0924 [Latest Version]
Download Chimera Tool Setup V42.47.0924 [Latest Version]
Designer
ย 
Internet Download Manager Crack Patch Latest IDM Free Download
Internet Download Manager Crack Patch Latest IDM Free DownloadInternet Download Manager Crack Patch Latest IDM Free Download
Internet Download Manager Crack Patch Latest IDM Free Download
Designer
ย 
Prof House interior Design Project exter
Prof House interior Design Project exterProf House interior Design Project exter
Prof House interior Design Project exter
NagudiBridget
ย 
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
Friends of Figm a, Sydney
ย 
Steam-Education-PowerPoint-Templates.pptx
Steam-Education-PowerPoint-Templates.pptxSteam-Education-PowerPoint-Templates.pptx
Steam-Education-PowerPoint-Templates.pptx
andripapa1
ย 
behiriskfactorsxyzkskeb210217133906 (1).pdf
behiriskfactorsxyzkskeb210217133906 (1).pdfbehiriskfactorsxyzkskeb210217133906 (1).pdf
behiriskfactorsxyzkskeb210217133906 (1).pdf
ShakibulHasan14
ย 
19 Best B,u,y Verified Cash App Accounts
19 Best B,u,y Verified Cash App Accounts19 Best B,u,y Verified Cash App Accounts
19 Best B,u,y Verified Cash App Accounts
https://sellsusa.com/product/buy-verified-cash-app-accounts/
ย 
Presentation for Schoool Management System
Presentation for Schoool Management SystemPresentation for Schoool Management System
Presentation for Schoool Management System
kolay922013
ย 
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
interpolacrcrdcrdrcrdctctfct frfctfction.pptinterpolacrcrdcrdrcrdctctfct frfctfction.ppt
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
pawan070201
ย 
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative StyleFlowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Likazelika
ย 
Doodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptxDoodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptx
binhyennghlu
ย 
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdfEEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
CastroAngeloReoD
ย 
Emily's slide design 101 - training module
Emily's slide design 101 - training moduleEmily's slide design 101 - training module
Emily's slide design 101 - training module
yourmisswright
ย 
325295919-AAC-Blocks-Seminar-Presentation.pdf
325295919-AAC-Blocks-Seminar-Presentation.pdf325295919-AAC-Blocks-Seminar-Presentation.pdf
325295919-AAC-Blocks-Seminar-Presentation.pdf
shivsin165
ย 
Are you Transitioning or Refining Now..?
Are you Transitioning or Refining Now..?Are you Transitioning or Refining Now..?
Are you Transitioning or Refining Now..?
Gregory Vigneaux
ย 
Hi! I'm Lori Vanzant. Please take a look
Hi! I'm Lori Vanzant. Please take a lookHi! I'm Lori Vanzant. Please take a look
Hi! I'm Lori Vanzant. Please take a look
vanzan01
ย 
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptxCOTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
ayushjadon04
ย 
Oversized Off White Pulka Dot Cotton Shirt
Oversized Off White Pulka Dot Cotton ShirtOversized Off White Pulka Dot Cotton Shirt
Oversized Off White Pulka Dot Cotton Shirt
ZNKL.in
ย 
Take this ppt refference and give content on mahindra commitment to sustainab...
Take this ppt refference and give content on mahindra commitment to sustainab...Take this ppt refference and give content on mahindra commitment to sustainab...
Take this ppt refference and give content on mahindra commitment to sustainab...
kochars428
ย 
Templates Wind Generator.pdf ahรญ. Ais d Ai d f
Templates Wind Generator.pdf ahรญ. Ais d Ai d fTemplates Wind Generator.pdf ahรญ. Ais d Ai d f
Templates Wind Generator.pdf ahรญ. Ais d Ai d f
jeremysegundob
ย 
Download Chimera Tool Setup V42.47.0924 [Latest Version]
Download Chimera Tool Setup V42.47.0924 [Latest Version]Download Chimera Tool Setup V42.47.0924 [Latest Version]
Download Chimera Tool Setup V42.47.0924 [Latest Version]
Designer
ย 
Internet Download Manager Crack Patch Latest IDM Free Download
Internet Download Manager Crack Patch Latest IDM Free DownloadInternet Download Manager Crack Patch Latest IDM Free Download
Internet Download Manager Crack Patch Latest IDM Free Download
Designer
ย 
Prof House interior Design Project exter
Prof House interior Design Project exterProf House interior Design Project exter
Prof House interior Design Project exter
NagudiBridget
ย 
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ฎ๐—น๐—น: ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
Friends of Figm a, Sydney
ย 
Steam-Education-PowerPoint-Templates.pptx
Steam-Education-PowerPoint-Templates.pptxSteam-Education-PowerPoint-Templates.pptx
Steam-Education-PowerPoint-Templates.pptx
andripapa1
ย 
behiriskfactorsxyzkskeb210217133906 (1).pdf
behiriskfactorsxyzkskeb210217133906 (1).pdfbehiriskfactorsxyzkskeb210217133906 (1).pdf
behiriskfactorsxyzkskeb210217133906 (1).pdf
ShakibulHasan14
ย 
Presentation for Schoool Management System
Presentation for Schoool Management SystemPresentation for Schoool Management System
Presentation for Schoool Management System
kolay922013
ย 
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
interpolacrcrdcrdrcrdctctfct frfctfction.pptinterpolacrcrdcrdrcrdctctfct frfctfction.ppt
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
pawan070201
ย 
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative StyleFlowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Flowers Coloring Pages Activity Worksheet in Black and White Illustrative Style
Likazelika
ย 
Doodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptxDoodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptx
binhyennghlu
ย 
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdfEEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
CastroAngeloReoD
ย 
Emily's slide design 101 - training module
Emily's slide design 101 - training moduleEmily's slide design 101 - training module
Emily's slide design 101 - training module
yourmisswright
ย 
325295919-AAC-Blocks-Seminar-Presentation.pdf
325295919-AAC-Blocks-Seminar-Presentation.pdf325295919-AAC-Blocks-Seminar-Presentation.pdf
325295919-AAC-Blocks-Seminar-Presentation.pdf
shivsin165
ย 
Are you Transitioning or Refining Now..?
Are you Transitioning or Refining Now..?Are you Transitioning or Refining Now..?
Are you Transitioning or Refining Now..?
Gregory Vigneaux
ย 
Hi! I'm Lori Vanzant. Please take a look
Hi! I'm Lori Vanzant. Please take a lookHi! I'm Lori Vanzant. Please take a look
Hi! I'm Lori Vanzant. Please take a look
vanzan01
ย 
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptxCOTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
ayushjadon04
ย 
Oversized Off White Pulka Dot Cotton Shirt
Oversized Off White Pulka Dot Cotton ShirtOversized Off White Pulka Dot Cotton Shirt
Oversized Off White Pulka Dot Cotton Shirt
ZNKL.in
ย 
Take this ppt refference and give content on mahindra commitment to sustainab...
Take this ppt refference and give content on mahindra commitment to sustainab...Take this ppt refference and give content on mahindra commitment to sustainab...
Take this ppt refference and give content on mahindra commitment to sustainab...
kochars428
ย 
Templates Wind Generator.pdf ahรญ. Ais d Ai d f
Templates Wind Generator.pdf ahรญ. Ais d Ai d fTemplates Wind Generator.pdf ahรญ. Ais d Ai d f
Templates Wind Generator.pdf ahรญ. Ais d Ai d f
jeremysegundob
ย 

Chapter 9 computation of the dft

  • 1. Biomedical Signal processing Chapter 9 Computation of the Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control Science and Engineering, Shandong University 02/19/13 1 1 Zhongguo Liu_Biomedical Engineering_Shandong Univ
  • 2. Chapter 9 Computation of the Discrete Fourier Transform 9.0 Introduction 9.1 Efficient Computation of Discrete Fourier Transform 9.2 The Goertzel Algorithm 9.3 decimation-in-time FFT Algorithms 9.4 decimation-in-frequency FFT Algorithms 9.5 practical considerations ๏ผˆ software realization) 2
  • 3. 9.0 Introduction ๏ตImplement a convolution of two sequences by the following procedure: ๏ต1. Compute the N-point DFT X 1 [ k ] and X 2 [ k ] of the two sequence x1 [ n] and x2 [ n] ๏ต2. Compute X 3 [ k ] = X 1 [ k ] X 2 [ k ]for 0 โ‰ค k โ‰ค N โˆ’1 ๏ต3. Compute x3 [ n] = x1 [ n] N x2 [ n] the inverse as DFT of X 3 [ k ] ๏ตWhy not convolve the two sequences directly? ๏ตThere are efficient algorithms called Fast Fourier Transform (FFT) that can be orders of 3 magnitude more efficient than others.
  • 4. 9.1 Efficient Computation of Discrete Fourier Transform ๏ตThe DFT pair was given as N โˆ’1 โˆ’ j ( 2ฯ€ / N ) kn 1 N โˆ’1 j ( 2ฯ€ / N ) kn X [ k ] = โˆ‘ x[n]e x[n] = โˆ‘ X [ k] e n =0 N k =0 ๏ตBaseline for computational complexity: ๏ตEach DFT coefficient requires ๏ตN complex multiplications; ๏ตN-1 complex additions ๏ตAll N DFT coefficients require ๏ตN2 complex multiplications; ๏ตN(N-1) complex additions 4 4
  • 5. 9.1 Efficient Computation of Discrete Fourier Transform N โˆ’1 โˆ’ j ( 2ฯ€ / N ) kn X [ k ] = โˆ‘ x[n]e n =0 ๏ตComplexity in terms of real operations ๏ต4N2 real multiplications ๏ต2N(N-1) real additions (approximate 2N2) 5 5
  • 6. 9.1 Efficient Computation of Discrete Fourier Transform ๏ตMost fast methods are based on Periodicity properties ๏ต( Periodicity in nโˆ’and /k;) Conjugate )symmetry( 2ฯ€ / N ) kn โˆ’ j 2ฯ€ / N ) k ( N โˆ’ n ) j ( 2ฯ€ N kN โˆ’ j ( 2ฯ€ / N k ( โˆ’ n ) j e =e e =e โˆ’ j ( 2ฯ€ / N ) kn โˆ’ j ( 2ฯ€ / N ) k ( n + N ) j ( 2ฯ€ / N ) ( k + N ) n e =e =e Re { } ] 6 6
  • 7. 9.2 The Goertzel Algorithm ๏ตMakes use of the periodicity j ( 2ฯ€ / N ) Nk e = e j 2ฯ€ k = 1 ๏ตMultiply DFT equation with this factor j ( 2ฯ€ / N ) kN N โˆ’1 โˆ’ j ( 2ฯ€ / N ) rk N โˆ’1 j ( 2ฯ€ / N ) k ( N โˆ’r ) X [ k] = e โˆ‘ x[r ]e = โˆ‘ x[r ]e r =0 r =0 โˆž j ( 2ฯ€ / N ) k ( n โˆ’r ) ๏ตDefine yk [ n ] = โˆ‘ x[r ]e u[ n โˆ’ r] r =โˆ’โˆž ๏ตusing x[n]=0 for n<0 and n>N-1 X [ k ] = yk [ n ] n = N ๏ตX[k] can be viewed as the output of a filter to the input x[n] ๏ตImpulse response of filter: j ( 2ฯ€ / N ) kn h[n] = e u [ n] ๏ตX[k] is the output of the filter at time n=N 7 7
  • 8. 9.2 The Goertzel Algorithm ๏ตGoertzel j ( 2ฯ€ / N ) kn h[n] = e u[n] = W โˆ’ knu[n] Filter: N 1 Hk ( z ) = 1 โˆ’ WN k z โˆ’1 โˆ’ โˆ’ yk [n] = yk [n โˆ’ 1]WN k + x[n], n = 0,1,..., N , yk [โˆ’1] = 0 X [ k ] = yk [ n ] n = N , k = 0,1,..., N N โˆ’1 X [ k ] = โˆ‘ x[n]WN kn n =0 ๏ตComputational complexity ๏ต4N real multiplications; 4N real additions ๏ตSlightly less efficient than the direct method ๏ตBut it avoids computation and storage of kn WN 8 8
  • 9. Second Order Goertzel Filter ๏ตGoertzel Filter 1 Hk ( z ) = 2ฯ€ j k โˆ’1 1โˆ’ e N z ๏ตMultiply both numerator and denominator โˆ’ j 2ฯ€ k โˆ’j 2ฯ€ k 1โˆ’ e N z โˆ’1 1โˆ’ e N z โˆ’1 Hk ( z ) = = ๏ฃซ 2ฯ€ โˆ’1 ๏ฃถ๏ฃซ โˆ’ j k โˆ’1 ๏ฃถ 2ฯ€ 2ฯ€ k โˆ’1 โˆ’2 1 โˆ’ e N z รท๏ฃฌ 1 โˆ’ e N z รท 1 โˆ’ 2 cos N z + z j k ๏ฃฌ ๏ฃญ ๏ฃธ๏ฃญ ๏ฃธ 2ฯ€ k y[n] = โˆ’ y[n โˆ’ 2] + 2 cos y[n โˆ’ 1] + x[n], n = 0,1,..., N N yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1] = X [ k ] , k = 0,1, ..., N 9 9
  • 10. Second Order Goertzel Filter 2ฯ€ k y[n] = โˆ’ y[n โˆ’ 2] + 2 cos y[n โˆ’ 1] + x[n], n = 0,1,..., N N yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1] = X [ k ] , k = 0,1, ..., N ๏ตComplexity for one DFT coefficient ( x(n) is complex sequence). ๏ตPoles: 2N real multiplications and 4N real additions ๏ตZeros: Need to be implement only once: ๏ต4 real multiplications and 4 real additions ๏ตComplexity for all DFT coefficients ๏ตEach pole is used for two DFT coefficients ๏ตApproximately N2 real multiplications and 2N2 real additions 10 10
  • 11. Second Order Goertzel Filter 2ฯ€ k y[n] = โˆ’ y[n โˆ’ 2] + 2 cos y[n โˆ’ 1] + x[n], n = 0,1,..., N N yk [ N ] = y[ N ] โˆ’ WNk y[ N โˆ’ 1] = X [ k ] , k = 0,1, ..., N ๏ตIf do not need to evaluate all N DFT coefficients ๏ตGoertzel Algorithm is more efficient than FFT if less than M DFT coefficients are needed,M < log2N 11 11
  • 12. 9.3 decimation-in-time FFT Algorithms ๏ตMakes use of both periodicity and symmetry ๏ตConsider special case of N an integer power of 2 ๏ตSeparate x[n] into two sequence of length N/2 ๏ตEven indexed samples in the first sequence ๏ตOdd indexed samples in the other sequence N โˆ’1 โˆ’ j ( 2ฯ€ / N ) kn X [ k ] = โˆ‘ x[n]e n =0 โˆ’ j ( 2ฯ€ / N ) kn โˆ’ j ( 2ฯ€ / N ) kn = โˆ‘ x[n]e n even + โˆ‘ x[n]e n odd 12 12
  • 13. 9.3 decimation-in-time FFT Algorithms โˆ’ j ( 2ฯ€ / N ) kn โˆ’ j ( 2ฯ€ / N ) kn X [ k] = โˆ‘ x[n]e + โˆ‘ x[n]e n even n odd ๏ตSubstitute variables n=2r for n even and n=2r+1 for odd N / 2 โˆ’1 N / 2 โˆ’1 X [ k] = โˆ‘ x[2r ]W 2 rk N + โˆ‘ x[2r + 1]W ( 2 r +1) k N r =0 r =0 N /2 โˆ’1 N /2 โˆ’1 = โˆ‘ r =0 x[2r ]WN /2 + WN rk k โˆ‘ r =0 x[2r + 1]WN / 2 rk = G[ k] +W H [ k] k โˆ’ j 2ฯ€ 2 โˆ’ j 2ฯ€ N W 2 N =e N = e N /2 = WN /2 ๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence 13 13
  • 14. 9.3 decimation-in-time FFT Algorithms N /2 โˆ’1 N /2 โˆ’1 X [ k] = โˆ‘ x[2r ]W rk N /2 +W k N โˆ‘ x[2r + 1]W rk N /2 r =0 r =0 = G[ k] +W H [ k]k โˆ’ j 2ฯ€ 2 rk โˆ’ j 2ฯ€ rk N e N = e N /2 = WNrk/2 N โˆ’1 k = 0,1,..., k = 0,1,..., N 2 ๏ฃฎ N๏ฃน ๏ฃฎ N๏ฃน G ๏ฃฏk + ๏ฃบ = G [ k ] H ๏ฃฏk + ๏ฃบ = H [ k ] ๏ฃฐ 2๏ฃป ๏ฃฐ 2๏ฃป ๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence 14 14
  • 15. 8-point DFT using decimation-in-time 15 Figure 9.3
  • 16. computational complexity ๏ตTwo N/2-point DFTs ๏ต2(N/2)2 complex multiplications ๏ต2(N/2)2 complex additions ๏ตCombining the DFT outputs ๏ตN complex multiplications ๏ตN complex additions ๏ตTotal complexity ๏ตN2/2+N complex multiplications 16 2 ๏ต 16
  • 17. 9.3 decimation-in-time FFT Algorithms ๏ตRepeat same process , Divide N/2-point DFTs into ๏ตTwo N/4-point DFTs ๏ตCombine outputs N=8 17 17
  • 18. 9.3 decimation-in-time FFT Algorithms ๏ตAfter two steps of decimation in time ๏ตRepeat until weโ€™re left with two-point DFTโ€™s 18 18
  • 19. 9.3 decimation-in-time FFT Algorithms ๏ตflow graph for 8-point decimation in time ๏ตComplexity: 19 ๏ตNlog2N complex multiplications and additions 19
  • 20. Butterfly Computation ๏ตFlow graph constitutes of butterflies ๏ตWe can implement each butterfly with one multiplication ๏ตFinal complexity for decimation-in-time FFT ๏ต(N/2)log2N complex multiplications and additions 20 20
  • 21. 9.3 decimation-in-time FFT Algorithms ๏ตFinal flow graph for 8-point decimation in time ๏ตComplexity: ๏ต(Nlog2N)/2 complex multiplications and Nlog2N additions 21 21
  • 22. 9.3.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ— ๏ตDecimation-in-time flow graphs require two sets of registers ๏ตInput and output for each stage X 0 [ 0] = x [ 0] x [ 0] X 2 [ 0] X [ 0] X 0 [ 1] = x [ 4] x [ 4] X 2 [ 1] X [ 1] X 0 [ 2] = x [ 2] x [ 2] X 2 [ 2] X [ 2] X 0 [ 3] = x [ 6] x [ 6] X 2 [ 3] X [ 3] X 0 [ 4] = x [ 1] x [ 1] X 2 [ 4] X [ 4] X 0 [ 5] = x [ 5 ] x [ 5] X 2 [ 5] X [ 5] X 0 [ 6] = x [ 3] x [ 3] X 2 [ 6] X [ 6] 22X 0 [ 7] = x [ 7] x [ 7] X 2 [ 7] X [ 7] 22
  • 23. 9.3.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ— ๏ตNote the arrangement of the input indices ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰ X 0 [ 0] = x [ 0] โ†” X 0 [ 000] = x [ 000] x [ 0] X [ 0] X 0 [ 1] = x [ 4] โ†” X 0 [ 001] = x [ 100] x [ 4] X [ 1] X 0 [ 2] = x [ 2] โ†” X 0 [ 010] = x [ 010] x [ 2] X [ 2] X 0 [ 3] = x [ 6] โ†” X 0 [ 011] = x [ 110] x [ 6] X [ 3] X 0 [ 4] = x [ 1] โ†” X 0 [ 100] = x [ 001] x [ 1] X [ 4] X 0 [ 5] = x [ 5] โ†” X 0 [ 101] = x [ 101] x [ 5] X [ 5] X 0 [ 6] = x [ 3] โ†” X 0 [ 110] = x [ 011] x [ 3] X [ 6] X 0 [ 7 ] = x [ 7 ] โ†” X 0 [ 111] = x [ 111] x [ 7] X [ 7] 23 23
  • 24. cause of bit-reversed order binary coding for position ๏ผš 000 001 010 011 100 101 110 111 must padding 0 to Figure 9.13 24 N = 2M
  • 25. 9.3.2 Alternative forms ๏ตNote the arrangement of the input indices ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰ X 0 [ 0] = x [ 0] โ†” X 0 [ 000] = x [ 000] x [ 0] X [ 0] X 0 [ 1] = x [ 4] โ†” X 0 [ 001] = x [ 100] x [ 4] X [ 1] X 0 [ 2] = x [ 2] โ†” X 0 [ 010] = x [ 010] x [ 2] X [ 2] X 0 [ 3] = x [ 6] โ†” X 0 [ 011] = x [ 110] x [ 6] X [ 3] X 0 [ 4] = x [ 1] โ†” X 0 [ 100] = x [ 001] x [ 1] X [ 4] X 0 [ 5] = x [ 5] โ†” X 0 [ 101] = x [ 101] x [ 5] X [ 5] X 0 [ 6] = x [ 3] โ†” X 0 [ 110] = x [ 011] x [ 3] X [ 6] X 0 [ 7 ] = x [ 7 ] โ†” X 0 [ 111] = x [ 111] x [ 7] X [ 7] 25 25
  • 26. 9.3.2 Alternative forms strongpoint ๏ผš in-place computations shortcoming ๏ผš non-sequential access of data Figure 9.14 26
  • 27. Figure 9.15 shortcoming ๏ผš not in-place computation non-sequential access of data 27
  • 28. Figure 9.16 shortcoming ๏ผš not in-place computation strongpoint: sequential access of data 28
  • 29. 9.3 decimation-in-time FFT Algorithms โˆ’ j ( 2ฯ€ / N ) kn โˆ’ j ( 2ฯ€ / N ) kn X [ k] = โˆ‘ x[n]e + โˆ‘ x[n]e n even n odd ๏ตSubstitute variables n=2r for n even and n=2r+1 for odd N / 2 โˆ’1 N / 2 โˆ’1 X [ k] = โˆ‘ x[2r ]W 2 rk N + โˆ‘ x[2r + 1]W ( 2 r +1) k N r =0 r =0 Review N /2 โˆ’1 N /2 โˆ’1 = โˆ‘ r =0 x[2r ]WN /2 + WN rk k โˆ‘ r =0 x[2r + 1]WN / 2 rk = G[ k] +W H [ k] k โˆ’ j 2ฯ€ 2 โˆ’ j 2ฯ€ N W 2 N =e N = e N /2 = WN /2 ๏ตG[k] and H[k] are the N/2-point DFTโ€™s of each subsequence 29 29
  • 30. 9.3.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ— ๏ตBit reversed indexing ๏ผˆ็ ไฝๅ€’็ฝฎ๏ผ‰ X 0 [ 000] = x [ 000] x [ 0] X [ 0] X 0 [ 001] = x [ 100] x [ 4] X [ 1] X 0 [ 010] = x [ 010] x [ 2] X [ 2] X 0 [ 011] = x [ 110] x [ 6] X [ 3] X 0 [ 100] = x [ 001] x [ 1] X [ 4] X 0 [ 101] = x [ 101] x [ 5] X [ 5] X 0 [ 110] = x [ 011] x [ 3] X [ 6] X 0 [ 111] = x [ 111] x [ 7] X [ 7] 30 30
  • 31. 9.3.2 Alternative forms strongpoint ๏ผš in-place computations shortcoming ๏ผš non-sequential access of data Figure 9.14 31
  • 32. 9.4 Decimation-In-Frequency FFT Algorithm N โˆ’1 ๏ตThe DFT equation X [ k ] = โˆ‘ x[n]WN nk n =0 ๏ตSplit the DFT equation into even and odd frequency indexes N โˆ’1 N / 2 โˆ’1 N โˆ’1 X [ 2r ] = โˆ‘ x[n]WN 2 r = n โˆ‘ x[n]WN 2 r + n โˆ‘ x[n]WN 2 r n n =0 n =0 n= N / 2 N /2 โˆ’1 N / 2 โˆ’1 ๏ตSubstitute variables = โˆ‘ x[n]W n =0 n2r N + โˆ‘ x[n + N / 2]W n =0 ( n + N /2 ) 2 r N N / 2 โˆ’1 = โˆ‘ ( x[n] + x[n + N / 2]) W n =0 nr N /2 N /2 โˆ’1 = โˆ‘ rn g (n)WN / 2 32 n =0 32
  • 33. 9.4 Decimation-In-Frequency FFT Algorithm N โˆ’1 ๏ตThe DFT equation X [ k ] = โˆ‘ x[n]WN nk n =0 N โˆ’1 N /2 โˆ’1 N โˆ’1 X [ 2r + 1] = โˆ‘ x[n]W n (2 r +1) N = โˆ‘ x[n]W n (2 r +1) N + โˆ‘ x[n]W n (2 r +1) N n=0 n=0 n = N /2 N /2 โˆ’1 N /2 โˆ’1 = โˆ‘ n =0 x[n]W n (2 r +1) N + โˆ‘ x[n + N / 2]W n =0 N ( n + N / 2 ) (2 r +1) N /2 โˆ’1 = โˆ‘ ( x[n] โˆ’ x[n + N / 2]) W n =0 n (2 r +1) N N / 2 โˆ’1 N /2 โˆ’1 = โˆ‘ ( x[n] โˆ’ x[n + N / 2]) W W n N rn N /2 = โˆ‘n =0 h(n)WN WNn2 n r / n =0 N n ( 2 r +1) (2 r +1) W N =W W =W W 2 rn N n N rn N /2 n N W 2 = WNNrWNN / 2 = โˆ’1 33 N 33
  • 34. decimation-in-frequency decomposition of an N- point DFT to N/2-point DFT N /2 โˆ’1 N /2 โˆ’1 X [ 2r ] = โˆ‘ ( x[n] + x[n + N / 2]) WN /2= nr โˆ‘ rn g (n)WN /2 n = 0 /2 โˆ’1 N n =0 N /2 โˆ’1 X [ 2r + 1] = 34 โˆ‘ n =0 ( x[n] โˆ’ x[n + N / 2]) WN W n rn N /2 = โˆ‘ n =0 h(n)WN WNn2 n r 34 /
  • 35. decimation-in-frequency decomposition of an 8- point DFT to four 2-point DFT N / 4 โˆ’1 N / 4 โˆ’1 X [ 2* 2 s ] = โˆ‘ [ g (n) + g (n + N / 4)]WNsn = /4 โˆ‘ p(n)WNsn /4 n =0 n =0 N / 4 โˆ’1 N /4 โˆ’1 X [ 2*(2 s + 1) ] = โˆ‘ [ g (n) โˆ’ g (n + N / 4)]W W 2n sn = โˆ‘ q ( n)WN nWNn 2 s 35 n =0 N N /4 n =0 35 /4
  • 36. 2-point DFT X v ( p ) = X vโˆ’1 ( p ) + X v โˆ’1 (q ) X v (q ) = ๏ฃฎ X v โˆ’1 ( p ) โˆ’ X vโˆ’1 (q ) ๏ฃน W80 ๏ฃฐ ๏ฃป when N = 8 36 36
  • 37. N /2 โˆ’1 N /2 โˆ’1 X [ 2r ] = โˆ‘ ( x[n] + x[n + N / 2]) nr WN /2 = โˆ‘ rn g (n)WN /2 n =0 n =0 N /4 โˆ’1 N /2 โˆ’1 X [ 2* 2 s ] = โˆ‘ g (n)WN /2 + 2 sn โˆ‘ 2 sn g (n)WN /2 n =0 n = N /4 N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ n =0 g (n)WN /2 + 2 sn โˆ‘ n =0 g (n + N / 4)WN /2( n + N /4) 2s N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ g (n)W n =0 sn N /4 + โˆ‘ g (n + N / 4)W n =0 sn N /4 N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ [ g (n) + g (n + N / 4)]W sn N /4 = โˆ‘ n =0 p(n)WNsn /4 n =0 37
  • 38. N /2 โˆ’1 N /2 โˆ’1 X [ 2r ] = โˆ‘ ( x[n] + x[n + N / 2]) nr WN /2 = โˆ‘ rn g (n)WN /2 n =0 n =0 N /2 โˆ’1 X [ 2*(2 s + 1) ] = โˆ‘ g (n)WN /2 +1) n (2 s n =0 N /4 โˆ’1 N /2 โˆ’1 = โˆ‘ n =0 g (n)WN /2+1) n + (2 s โˆ‘ n= N / 4 g (n)WN /2 +1) n (2 s N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ n =0 g (n)WNsn WN /2 + /4 n โˆ‘ n =0 g (n + N / 4)WN /2+1)( n + N /4) (2 s N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ n =0 g (n)WNsn WN n + /4 2 โˆ‘ n =0 g (n + N / 4)WNsn WN nWN / 2+1) N /4 /4 2 (2 s N /4 โˆ’1 N /4 โˆ’1 = โˆ‘ [ g (n) โˆ’ g (n + N / 4)]W 2n N W sn N /4 = โˆ‘ n =0 q (n)WN nWNsn 2 /4 n =0 38 WN /2 +1) N /4 = WNsN /2WNN/2 = โˆ’1 (2 s /2 /4
  • 39. N /4 โˆ’1 X [ 2* 2 s ] = โˆ‘ p (n)WNsn /4 n =0 N /4 โˆ’1 X [ 2* 2* 2t ] = โˆ‘ p (n)W 2 tn N /4 n =0 N /8 โˆ’1 N /4 โˆ’1 = โˆ‘ n =0 p (n)W 2 tn N /4 + โˆ‘ n = N /8 p (n)W 2 tn N /4 N /8 โˆ’1 N /8 โˆ’1 = โˆ‘n =0 p (n)W 2 tn N /4 + โˆ‘ n =0 p(n + N / 8)W 2 t ( n + N /8) N /4 N /8 โˆ’1 = โˆ‘ n =0 [ p(n) + p (n + N / 8)]WN /8 tn = p(n) + p (n + 1) when N = 8 39
  • 40. N /4 โˆ’1 X [ 2* 2 s ] = โˆ‘ p (n)WNsn /4 n =0 N /4 โˆ’1 X [ 2* 2*(2t + 1) ] = โˆ‘ p(n)WN /4+1) n (2 t n =0 N /8 โˆ’1 N /4 โˆ’1 = โˆ‘n =0 p (n)WN /4+1) n + (2 t โˆ‘ n = N /8 p (n)WN / 4+1) n (2 t N /8 โˆ’1 N /8 โˆ’1 = โˆ‘n =0 p (n)WN /4+1) n + (2 t โˆ‘ n =0 p (n + N / 8)WN /4+1)( n + N /8) (2 t N /8 โˆ’1 N /8โˆ’1 = โˆ‘ n =0 p (n)WN /4WN /4 + 2 tn n โˆ‘ n =0 p (n + N / 8)WN /4WN /4WN /4+1) N /8 2 tn n (2 t N /8 โˆ’1 = โˆ‘ [ p(n) โˆ’ p(n + N / 8)]WN /8WN n tn 4 n =0 WN(2/4+1) N /8 = WNtN /4WNN/4 = โˆ’ 1 t /4 /8 = [ p (n) โˆ’ p (n + 1)]W80 when N = 8 40
  • 41. Final flow graph for 8-point DFT decimation in frequency 41 41
  • 42. 9.4.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ— DIF FFT DIT FFT 42 42
  • 43. 9.4.1 In-Place Computation ๅŒๅ€่ฟ ็ฎ— DIF FFT DIT FFT 43 43
  • 44. 9.4.2 Alternative forms ๏ตdecimation-in-frequecy Butterfly Computation ๏ตdecimation-in-time Butterfly Computation 44 44
  • 45. The DIF FFT is the transpose of the DIT FFT DIF FFT DIT FFT 45 45
  • 48. Figure 9.24 erratum x [ 0] x [ 4] x [ 2] x [ 6] x [ 1] x [ 5] x [ 3] x [ 7] 48
  • 50. Chapter 9 HW ๏ต9.1, 9.2, 9.3, 50 50 ่ฟ” ๅ›ž02/19/13 ไธŠไธ€้กต Zhongguo Liu_Biomedical Engineering_Shandong ไธ‹ไธ€้กต Univ.