SlideShare a Scribd company logo
Why MongoDB was Createdwe start at 9:30MongoSF 2011Dwight Merriman / 10gen
signs we needed something differentdoubleclick - 400,000 ads/secondpeople writing their own storescaching is de rigueurcomplex ORM frameworkscomputer architecture trendscloud computing
the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
the db space+ fits OO programming well+ agile+ speed/scale- querying a little less add hoc- not super transactional- not sql
data models
as simple as possible but no simpler
as simple as possible but no simplerneed a good degree of functionality to handle a large set of use casessometimes need strong consistency / atomicitysecondary indexesad hoc queries
as simple as possible but no simplerbut, leave out a few things so we can scaleno choice but to leave out relationaldistributed transactions are hard to scale
as simple as possible but no simplerto scale, need a new data model.  some options:key/valuecolumnar / tabulardocument oriented (JSON inspired)opportunity to innovate -> agility
mongodb philosphyNo longer one-size-fits all.  but not 12 tools either.By reducing transactional semantics the db provides, one can still solve an interesting set of problems where performance is very important, and horizontal scaling then becomes easier.Non-relational (no joins) makes scaling horizontally practicalDocument data models are goodKeep functionality when we can (key/value stores are great, but we nee more)Database technology should run anywhere, being available both for running on your own servers or VMs, and also as a cloud pay-for-what-you-use service.  And ideally open source...
Questions?http://blog.mongodb.org/@mongodbme - @dmerrwww.mongodb.orghttp://groups.google.com/group/mongodb-userirc://irc.freenode.net/#mongodbMongoNYC - June 7Mongo Hamburg - June 27MongoDC - June 2710AM - in this room: Schema Design10:45AM - breakthanks
Ad

More Related Content

Similar to Why mongo db was created - Dwight Merriman - MongoSF 2011 (20)

Why NoSQL Makes Sense
Why NoSQL Makes SenseWhy NoSQL Makes Sense
Why NoSQL Makes Sense
DATAVERSITY
 
No sql
No sqlNo sql
No sql
Prateek Jain
 
Big iron 2 (published)
Big iron 2 (published)Big iron 2 (published)
Big iron 2 (published)
Ben Stopford
 
NoSQL
NoSQLNoSQL
NoSQL
dbulic
 
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als DatenplattformRalph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Informatik Aktuell
 
NO SQL: What, Why, How
NO SQL: What, Why, HowNO SQL: What, Why, How
NO SQL: What, Why, How
Igor Moochnick
 
Azure BI Cloud Architectural Guidelines.pdf
Azure BI Cloud Architectural Guidelines.pdfAzure BI Cloud Architectural Guidelines.pdf
Azure BI Cloud Architectural Guidelines.pdf
pbonillo1
 
NoSQL for great good [hanoi.rb talk]
NoSQL for great good [hanoi.rb talk]NoSQL for great good [hanoi.rb talk]
NoSQL for great good [hanoi.rb talk]
Huy Do
 
MongoDB
MongoDBMongoDB
MongoDB
Stefano Coratti
 
MongoDB Introduction - Document Oriented Nosql Database
MongoDB Introduction - Document Oriented Nosql DatabaseMongoDB Introduction - Document Oriented Nosql Database
MongoDB Introduction - Document Oriented Nosql Database
Sudhir Patil
 
Data warehouse 2.0 and sql server architecture and vision
Data warehouse 2.0 and sql server architecture and visionData warehouse 2.0 and sql server architecture and vision
Data warehouse 2.0 and sql server architecture and vision
Klaudiia Jacome
 
Relational databases vs Non-relational databases
Relational databases vs Non-relational databasesRelational databases vs Non-relational databases
Relational databases vs Non-relational databases
James Serra
 
MongoDB eBook a complete guide to beginners
MongoDB eBook a complete guide to beginnersMongoDB eBook a complete guide to beginners
MongoDB eBook a complete guide to beginners
MeiyappanRm
 
Overcoming Today's Data Challenges with MongoDB
Overcoming Today's Data Challenges with MongoDBOvercoming Today's Data Challenges with MongoDB
Overcoming Today's Data Challenges with MongoDB
MongoDB
 
SQL vs NoSQL, an experiment with MongoDB
SQL vs NoSQL, an experiment with MongoDBSQL vs NoSQL, an experiment with MongoDB
SQL vs NoSQL, an experiment with MongoDB
Marco Segato
 
Heterogeneous Data - Published
Heterogeneous Data - PublishedHeterogeneous Data - Published
Heterogeneous Data - Published
Paul Steffensen
 
NoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
NoSQL and NewSQL: Tradeoffs between Scalable Performance & ConsistencyNoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
NoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
ScyllaDB
 
Evolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/SpecialistEvolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/Specialist
Tony Rogerson
 
Logical Data Fabric and Data Mesh – Driving Business Outcomes
Logical Data Fabric and Data Mesh – Driving Business OutcomesLogical Data Fabric and Data Mesh – Driving Business Outcomes
Logical Data Fabric and Data Mesh – Driving Business Outcomes
Denodo
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 
Why NoSQL Makes Sense
Why NoSQL Makes SenseWhy NoSQL Makes Sense
Why NoSQL Makes Sense
DATAVERSITY
 
Big iron 2 (published)
Big iron 2 (published)Big iron 2 (published)
Big iron 2 (published)
Ben Stopford
 
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als DatenplattformRalph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Informatik Aktuell
 
NO SQL: What, Why, How
NO SQL: What, Why, HowNO SQL: What, Why, How
NO SQL: What, Why, How
Igor Moochnick
 
Azure BI Cloud Architectural Guidelines.pdf
Azure BI Cloud Architectural Guidelines.pdfAzure BI Cloud Architectural Guidelines.pdf
Azure BI Cloud Architectural Guidelines.pdf
pbonillo1
 
NoSQL for great good [hanoi.rb talk]
NoSQL for great good [hanoi.rb talk]NoSQL for great good [hanoi.rb talk]
NoSQL for great good [hanoi.rb talk]
Huy Do
 
MongoDB Introduction - Document Oriented Nosql Database
MongoDB Introduction - Document Oriented Nosql DatabaseMongoDB Introduction - Document Oriented Nosql Database
MongoDB Introduction - Document Oriented Nosql Database
Sudhir Patil
 
Data warehouse 2.0 and sql server architecture and vision
Data warehouse 2.0 and sql server architecture and visionData warehouse 2.0 and sql server architecture and vision
Data warehouse 2.0 and sql server architecture and vision
Klaudiia Jacome
 
Relational databases vs Non-relational databases
Relational databases vs Non-relational databasesRelational databases vs Non-relational databases
Relational databases vs Non-relational databases
James Serra
 
MongoDB eBook a complete guide to beginners
MongoDB eBook a complete guide to beginnersMongoDB eBook a complete guide to beginners
MongoDB eBook a complete guide to beginners
MeiyappanRm
 
Overcoming Today's Data Challenges with MongoDB
Overcoming Today's Data Challenges with MongoDBOvercoming Today's Data Challenges with MongoDB
Overcoming Today's Data Challenges with MongoDB
MongoDB
 
SQL vs NoSQL, an experiment with MongoDB
SQL vs NoSQL, an experiment with MongoDBSQL vs NoSQL, an experiment with MongoDB
SQL vs NoSQL, an experiment with MongoDB
Marco Segato
 
Heterogeneous Data - Published
Heterogeneous Data - PublishedHeterogeneous Data - Published
Heterogeneous Data - Published
Paul Steffensen
 
NoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
NoSQL and NewSQL: Tradeoffs between Scalable Performance & ConsistencyNoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
NoSQL and NewSQL: Tradeoffs between Scalable Performance & Consistency
ScyllaDB
 
Evolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/SpecialistEvolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/Specialist
Tony Rogerson
 
Logical Data Fabric and Data Mesh – Driving Business Outcomes
Logical Data Fabric and Data Mesh – Driving Business OutcomesLogical Data Fabric and Data Mesh – Driving Business Outcomes
Logical Data Fabric and Data Mesh – Driving Business Outcomes
Denodo
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDBMongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDBMongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
Ad

Why mongo db was created - Dwight Merriman - MongoSF 2011

  • 1. Why MongoDB was Createdwe start at 9:30MongoSF 2011Dwight Merriman / 10gen
  • 2. signs we needed something differentdoubleclick - 400,000 ads/secondpeople writing their own storescaching is de rigueurcomplex ORM frameworkscomputer architecture trendscloud computing
  • 3. the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
  • 4. the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
  • 5. the db space 2000 - 2010+ great for complex transactions+ great for tabular data+ ad hoc queries easy- O<->R mapping hard- speed/scale challenges- not super agile+ ad hoc queries easy+ SQL gives us a standard protocol for the interface between clients and servers+ scales horizontally better than operational dbs. some scale limits at massive scale- schemas are rigid- real time is hard; very good at bulk nightly data loads
  • 6. the db space+ fits OO programming well+ agile+ speed/scale- querying a little less add hoc- not super transactional- not sql
  • 8. as simple as possible but no simpler
  • 9. as simple as possible but no simplerneed a good degree of functionality to handle a large set of use casessometimes need strong consistency / atomicitysecondary indexesad hoc queries
  • 10. as simple as possible but no simplerbut, leave out a few things so we can scaleno choice but to leave out relationaldistributed transactions are hard to scale
  • 11. as simple as possible but no simplerto scale, need a new data model. some options:key/valuecolumnar / tabulardocument oriented (JSON inspired)opportunity to innovate -> agility
  • 12. mongodb philosphyNo longer one-size-fits all. but not 12 tools either.By reducing transactional semantics the db provides, one can still solve an interesting set of problems where performance is very important, and horizontal scaling then becomes easier.Non-relational (no joins) makes scaling horizontally practicalDocument data models are goodKeep functionality when we can (key/value stores are great, but we nee more)Database technology should run anywhere, being available both for running on your own servers or VMs, and also as a cloud pay-for-what-you-use service. And ideally open source...