SlideShare a Scribd company logo
Bravo Six, Going Realtime.
Transitioning Activision Data
Pipeline to Streaming
© 2020 Activision Publishing, Inc.
Hello!
I am Yaroslav Tkachenko
Software Architect at Activision Data.
You can find me at @sap1ens (pretty much everywhere).
2
Activision Data Pipeline
3
● Ingesting, processing and storing game telemetry data
● Providing tabular, API and streaming access to data
HTTP API
Schema
Registry
Magic
200k+ msg/s
Ingestion rate
9 years
Age of the oldest game
5+ PB
Data lake size (AWS S3)
5
Challenges
● Complex client-side & server-side game telemetry
● Long-living titles, hard to update or deprecate
● Various data formats, message schemas and envelopes
● Development data == production data
● Scalability, elasticity & cost
6
Established standards
7
● Kafka topic name conventions must be followed
● Payload schema must be uploaded to the Schema Registry
● Message envelope has a schema too (Protobuf), with a set of
required fields
Old pipeline
Quick overview
aggregate transform transform
devdata
proddata
Batch job*
(MR, Hive, Spark)
ETL API
* every X hours
transformed data
ETL’ed data
Prod data
Old pipeline
Architecture Flaws
● Scalability solution as a workaround
● Painful to switch between dev &
prod
● No streaming capabilities
● Adhoc integration
Bottlenecks
● Latency limitations
● MR glob length, memory is not
infinite (ETL API), etc.
● Lots of manual configuration
● Lots of manual ETL
11
New pipeline
It gets better from here
Apache Kafka
● The Streams API allows an application to act as a stream
processor, consuming an input stream from one or more topics
and producing an output stream to one or more output topics,
effectively transforming the input streams to output streams.
● The Connector API allows building and running reusable
producers or consumers that connect Kafka topics to existing
applications or data systems. For example, a connector to a
relational database might capture every change to a table.
13
~10 seconds
End-to-end streaming latency
90% cheaper
Per user/byte
6-24 hours → 5-10 mins
Tabular data available for querying
14
Kafka Streams
● One transformation step = one
service*
○ Not entirely true anymore, we’ve
combined some steps to optimize
cost and reduce unnecessary IO
● Stateless if possible
● Rich routing
● Auto-scaling & self-healing
● LOTS of tooling
Guiding principles
Kafka Connect
● Handle integration - AWS S3,
Cassandra, Elasticsearch, etc.
● Only sink connectors
● Invest in configuration,
deployments, monitoring
15
transform transform Connect
Why
Kafka
Streams?
17
Simple Java
library
Industry
standard
features
Separation
of concerns
that makes
sense
Kafka
first
Our internal protocol
18
Serialized Avro
Null (99%)
Schema guid
Other metadata,
mostly for routing
Kafka Message Value
Kafka Message Key
Kafka Message Headers
Schema management
● Schemas are generated & uploaded automatically if needed.
Schema hash is used as id
● Make schemas immutable and cache them aggressively. You
have to use them for every single record!
19
Schema
Registry API
Distributed
Cache
In-memory
Cache
Typical Kafka Streams
service topology
20
consume process
enrich produce
DLQ
21
1 KStream[] streams = builder
2 .stream(Pattern.compile(applicationConfig.getTopics()))
3 .transform(MetadataEnricher::new)
4 .transform(() -> new InputMetricsHandler(applicationMetrics))
5 .transform(ResultExtractor::new)
6 .transform(() -> new OutputMetricsHandler(applicationMetrics))
7 .branch(
8 (key, value) -> value instanceof RecordSucceeded,
9 (key, value) -> value instanceof RecordFailed,
10 (key, value) -> value instanceof RecordSkipped
11 );
12
13 // RecordSucceeded
14 streams[0].map((key, value) -> KeyValue.pair(key, ((RecordSucceeded)
value).getGenericRecord()))
15 .transform(SchemaGuidEnricher<String, GenericRecord>::new)
16 .to(new SinkTopicNameExtractor());
17
18 // RecordFailed
19 streams[1].process(dlqFailureResultHandlerSupplier);
Routing & configuration
Before:
<env>.<producer>.<title>.<category>-<protocol>
e.g.
prod.service-a.1234.match_summary-v1
“raw” data, no transformations
22
Routing & configuration
Now:
<env>.rdp.<game>.<stage1>
↓
<env>.rdp.<game>.<stage2>
↓
<env>.rdp.<game>.<stageN>
23
microservice
microservice
Routing & configuration
prod.rdp.mw.ingested
↓
prod.rdp.mw.parsed
24
microservice
prodMwServiceA:
stream:
headers:
env: prod
game: mw
source: service-a
exclude: <thingX>
action:
type: parse
protocol: proto2
Routing & configuration
prod.rdp.mw.ingested
↓
prod.rdp.mw.parsed
25
microservice
prodMwServiceA:
stream:
headers:
env: prod
game: mw
source: service-a
exclude: <thingX>
action:
type: parse
protocol: proto2Streams can be skipped, split, merged, sampled, etc.
Dynamic Routing*
26
● Centralized, declarative configuration
● Self-serve APIs and UIs
● Every change is automatically applied to all running services
within seconds
Infra & Tools
27
● One-click Kafka deployment (Jenkins, Ansible)
● Kafka broker EBS auto-scaling
● Versioned & deployable Kafka topic configuration
● Built tooling for:
○ Data reprocessing and DLQ resubmission
○ Offset migration between consumer groups
○ Message inspection
○ ...
Scaling
● Every application submits
<app_name>.lag metric in
milliseconds
● ECS Step Scaling: add/remove
X more instances every Y
minutes
● Add an extra policy for rapid
scaling
Auto-scaling & self-healing
Healing
● Heartbeat endpoint monitors
streams.state() result
● ECS healthcheck replaces
unhealthy instances
● Stateful applications need
more time to bootstrap
28
Why
Kafka
Connect?
29
Powerful
framework
Built-in
connectors
Separation
of concerns
that makes
sense
Kafka
first
Kafka Connect
● Multiple smaller clusters > one big cluster
● Connectors configuration lives in git, uses Jsonnet.
Deployment script leverages REST API
● Custom Converter, thanks to KIP-440
● ❤ lensesio/kafka-connect-ui
● Collecting & using tons of metrics available over JMX
30
C* Connector
● Implemented from scratch, inspired by JDBC connector
● Started with porting over existing C* integration code
● Took us a few days (!) to wrap it up
● Generalizing is hard
● Very performant, usually just a few tasks are running
31
ES Connector
● Using open-source kafka-connect-elasticsearch
● Leveraging SMTs to:
○ Partition single topic into multiple indexes
○ Enrich with a timestamp
● Currently very low-volume
32
S3 Connector
● Started with forking open-source kafka-connect-s3
● Added custom Avro and Parquet formats
● Added a new flexible partitioner
● Optimized connector for at-least-once delivery
○ Generate less files on S3, reduce TPS
○ Avoid file overrides with non-deterministic upload triggers
● Running hundreds of tasks
33
Dev data is prod data
● Scale is different, but the pipeline is the same
● Running as a separate set of services to reduce latency,
low latency is a requirement
● Different approach to alerting
Otherwise, it’s the same!
34
Use Case: RADS
Flatten my data!
36
{
"headers": {
"field1": "value1",
},
"data": {
"match": {
"field2": "value2"
},
"players": [
{"field3": "value3",
"field4": "value4"},
{"field3": "value3",
"field4": "value4"}
]
}
}
message_id context_headers_field1_s data_match_field2_s
... ... ...
... ... ...
fact_data
message_id index context_headers
_field1_s
data_players
_field3_i
...
... ... ... ... ...
... ... ... ... ...
fact_data_players
DDL
ingest transform flatten
table-generator
S3
connector
consolidator
Avro
Parquet
1:1 1:1 1:M
RADS
Schema
Registry API
Project API Metastore DB
S3
connector
Avro
Why is RADS rad?
● Has enough automation and generic configuration to
automatically create Hive databases, tables, add new
columns and partitions for a brand new game with no*
human intervention.
● As a data producer you just need to start sending data in
the right format to the right Kafka topic, that’s it!
● We get realtime (“hot”) and historical (“cold”) data in the
same place!
38
39
Thanks!
Any questions?
@sap1ens
Ad

More Related Content

What's hot (20)

Flink vs. Spark
Flink vs. SparkFlink vs. Spark
Flink vs. Spark
Slim Baltagi
 
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
confluent
 
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
PgDay.Seoul
 
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
Heungsub Lee
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
DataStax
 
게임서버 구축 방법비교 : GBaaS vs. Self-hosting
게임서버 구축 방법비교 : GBaaS vs. Self-hosting게임서버 구축 방법비교 : GBaaS vs. Self-hosting
게임서버 구축 방법비교 : GBaaS vs. Self-hosting
iFunFactory Inc.
 
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
PgDay.Seoul
 
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
devCAT Studio, NEXON
 
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
devCAT Studio, NEXON
 
Connection Pooling in PostgreSQL using pgbouncer
Connection Pooling in PostgreSQL using pgbouncer Connection Pooling in PostgreSQL using pgbouncer
Connection Pooling in PostgreSQL using pgbouncer
Sameer Kumar
 
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
ScyllaDB
 
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache KafkaKafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
confluent
 
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
confluent
 
SQL Plan Directives explained
SQL Plan Directives explainedSQL Plan Directives explained
SQL Plan Directives explained
Mauro Pagano
 
Speed Up Uber's Presto with Alluxio
Speed Up Uber's Presto with AlluxioSpeed Up Uber's Presto with Alluxio
Speed Up Uber's Presto with Alluxio
Alluxio, Inc.
 
Managing (Schema) Migrations in Cassandra
Managing (Schema) Migrations in CassandraManaging (Schema) Migrations in Cassandra
Managing (Schema) Migrations in Cassandra
DataStax Academy
 
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadinC* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
DataStax Academy
 
MMOG Server-Side 충돌 및 이동처리 설계와 구현
MMOG Server-Side 충돌 및 이동처리 설계와 구현MMOG Server-Side 충돌 및 이동처리 설계와 구현
MMOG Server-Side 충돌 및 이동처리 설계와 구현
YEONG-CHEON YOU
 
Getting Started with HBase
Getting Started with HBaseGetting Started with HBase
Getting Started with HBase
Carol McDonald
 
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
Synchronous Commands over Apache Kafka (Neil Buesing, Object Partners, Inc) K...
confluent
 
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
PgDay.Seoul
 
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
〈야생의 땅: 듀랑고〉 서버 아키텍처 Vol. 3
Heungsub Lee
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
The Missing Manual for Leveled Compaction Strategy (Wei Deng & Ryan Svihla, D...
DataStax
 
게임서버 구축 방법비교 : GBaaS vs. Self-hosting
게임서버 구축 방법비교 : GBaaS vs. Self-hosting게임서버 구축 방법비교 : GBaaS vs. Self-hosting
게임서버 구축 방법비교 : GBaaS vs. Self-hosting
iFunFactory Inc.
 
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
PgDay.Seoul
 
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
홍성우, 게임 서버의 목차 - 시작부터 출시까지, NDC2019
devCAT Studio, NEXON
 
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
이승재, 실버바인 서버엔진 2 설계 리뷰, NDC2018
devCAT Studio, NEXON
 
Connection Pooling in PostgreSQL using pgbouncer
Connection Pooling in PostgreSQL using pgbouncer Connection Pooling in PostgreSQL using pgbouncer
Connection Pooling in PostgreSQL using pgbouncer
Sameer Kumar
 
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
ScyllaDB
 
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache KafkaKafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
Kafka Summit NYC 2017 - Data Processing at LinkedIn with Apache Kafka
confluent
 
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
Building Large-Scale Stream Infrastructures Across Multiple Data Centers with...
confluent
 
SQL Plan Directives explained
SQL Plan Directives explainedSQL Plan Directives explained
SQL Plan Directives explained
Mauro Pagano
 
Speed Up Uber's Presto with Alluxio
Speed Up Uber's Presto with AlluxioSpeed Up Uber's Presto with Alluxio
Speed Up Uber's Presto with Alluxio
Alluxio, Inc.
 
Managing (Schema) Migrations in Cassandra
Managing (Schema) Migrations in CassandraManaging (Schema) Migrations in Cassandra
Managing (Schema) Migrations in Cassandra
DataStax Academy
 
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadinC* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
DataStax Academy
 
MMOG Server-Side 충돌 및 이동처리 설계와 구현
MMOG Server-Side 충돌 및 이동처리 설계와 구현MMOG Server-Side 충돌 및 이동처리 설계와 구현
MMOG Server-Side 충돌 및 이동처리 설계와 구현
YEONG-CHEON YOU
 
Getting Started with HBase
Getting Started with HBaseGetting Started with HBase
Getting Started with HBase
Carol McDonald
 

Similar to Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streaming (20)

Event Driven Microservices
Event Driven MicroservicesEvent Driven Microservices
Event Driven Microservices
Fabrizio Fortino
 
SamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentationSamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentation
Yi Pan
 
Chicago Kafka Meetup
Chicago Kafka MeetupChicago Kafka Meetup
Chicago Kafka Meetup
Cliff Gilmore
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Building a Dynamic Rules Engine with Kafka Streams
Building a Dynamic Rules Engine with Kafka StreamsBuilding a Dynamic Rules Engine with Kafka Streams
Building a Dynamic Rules Engine with Kafka Streams
HostedbyConfluent
 
GPU-Accelerating A Deep Learning Anomaly Detection Platform
GPU-Accelerating A Deep Learning Anomaly Detection PlatformGPU-Accelerating A Deep Learning Anomaly Detection Platform
GPU-Accelerating A Deep Learning Anomaly Detection Platform
NVIDIA
 
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Data Con LA
 
Spark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream ProcessingSpark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream Processing
Jack Gudenkauf
 
Spark to DocumentDB connector
Spark to DocumentDB connectorSpark to DocumentDB connector
Spark to DocumentDB connector
Denny Lee
 
RAPIDS: GPU-Accelerated ETL and Feature Engineering
RAPIDS: GPU-Accelerated ETL and Feature EngineeringRAPIDS: GPU-Accelerated ETL and Feature Engineering
RAPIDS: GPU-Accelerated ETL and Feature Engineering
Keith Kraus
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Spark cep
Spark cepSpark cep
Spark cep
Byungjin Kim
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Databricks
 
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Databricks
 
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
HostedbyConfluent
 
MACHBASE_NEO
MACHBASE_NEOMACHBASE_NEO
MACHBASE_NEO
MACHBASE
 
Encode Club workshop slides
Encode Club workshop slidesEncode Club workshop slides
Encode Club workshop slides
Vanessa Lošić
 
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database AnalyticsPL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
Kohei KaiGai
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka Streams
Guido Schmutz
 
Event Driven Microservices
Event Driven MicroservicesEvent Driven Microservices
Event Driven Microservices
Fabrizio Fortino
 
SamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentationSamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentation
Yi Pan
 
Chicago Kafka Meetup
Chicago Kafka MeetupChicago Kafka Meetup
Chicago Kafka Meetup
Cliff Gilmore
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Building a Dynamic Rules Engine with Kafka Streams
Building a Dynamic Rules Engine with Kafka StreamsBuilding a Dynamic Rules Engine with Kafka Streams
Building a Dynamic Rules Engine with Kafka Streams
HostedbyConfluent
 
GPU-Accelerating A Deep Learning Anomaly Detection Platform
GPU-Accelerating A Deep Learning Anomaly Detection PlatformGPU-Accelerating A Deep Learning Anomaly Detection Platform
GPU-Accelerating A Deep Learning Anomaly Detection Platform
NVIDIA
 
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Data Con LA
 
Spark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream ProcessingSpark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream Processing
Jack Gudenkauf
 
Spark to DocumentDB connector
Spark to DocumentDB connectorSpark to DocumentDB connector
Spark to DocumentDB connector
Denny Lee
 
RAPIDS: GPU-Accelerated ETL and Feature Engineering
RAPIDS: GPU-Accelerated ETL and Feature EngineeringRAPIDS: GPU-Accelerated ETL and Feature Engineering
RAPIDS: GPU-Accelerated ETL and Feature Engineering
Keith Kraus
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Databricks
 
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Accelerating Real Time Analytics with Spark Streaming and FPGAaaS with Prabha...
Databricks
 
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
SingleStore & Kafka: Better Together to Power Modern Real-Time Data Architect...
HostedbyConfluent
 
MACHBASE_NEO
MACHBASE_NEOMACHBASE_NEO
MACHBASE_NEO
MACHBASE
 
Encode Club workshop slides
Encode Club workshop slidesEncode Club workshop slides
Encode Club workshop slides
Vanessa Lošić
 
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database AnalyticsPL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
Kohei KaiGai
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka Streams
Guido Schmutz
 
Ad

More from Yaroslav Tkachenko (16)

Dynamic Change Data Capture with Flink CDC and Consistent Hashing
Dynamic Change Data Capture with Flink CDC and Consistent HashingDynamic Change Data Capture with Flink CDC and Consistent Hashing
Dynamic Change Data Capture with Flink CDC and Consistent Hashing
Yaroslav Tkachenko
 
Streaming SQL for Data Engineers: The Next Big Thing?
Streaming SQL for Data Engineers: The Next Big Thing?Streaming SQL for Data Engineers: The Next Big Thing?
Streaming SQL for Data Engineers: The Next Big Thing?
Yaroslav Tkachenko
 
Apache Flink Adoption at Shopify
Apache Flink Adoption at ShopifyApache Flink Adoption at Shopify
Apache Flink Adoption at Shopify
Yaroslav Tkachenko
 
Apache Kafka: New Features That You Might Not Know About
Apache Kafka: New Features That You Might Not Know AboutApache Kafka: New Features That You Might Not Know About
Apache Kafka: New Features That You Might Not Know About
Yaroslav Tkachenko
 
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Yaroslav Tkachenko
 
Designing Scalable and Extendable Data Pipeline for Call Of Duty Games
Designing Scalable and Extendable Data Pipeline for Call Of Duty GamesDesigning Scalable and Extendable Data Pipeline for Call Of Duty Games
Designing Scalable and Extendable Data Pipeline for Call Of Duty Games
Yaroslav Tkachenko
 
10 tips for making Bash a sane programming language
10 tips for making Bash a sane programming language10 tips for making Bash a sane programming language
10 tips for making Bash a sane programming language
Yaroslav Tkachenko
 
Actors or Not: Async Event Architectures
Actors or Not: Async Event ArchitecturesActors or Not: Async Event Architectures
Actors or Not: Async Event Architectures
Yaroslav Tkachenko
 
Kafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processingKafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processing
Yaroslav Tkachenko
 
Building Stateful Microservices With Akka
Building Stateful Microservices With AkkaBuilding Stateful Microservices With Akka
Building Stateful Microservices With Akka
Yaroslav Tkachenko
 
Querying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS AthenaQuerying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
Akka Microservices Architecture And Design
Akka Microservices Architecture And DesignAkka Microservices Architecture And Design
Akka Microservices Architecture And Design
Yaroslav Tkachenko
 
Why Actor-Based Systems Are The Best For Microservices
Why Actor-Based Systems Are The Best For MicroservicesWhy Actor-Based Systems Are The Best For Microservices
Why Actor-Based Systems Are The Best For Microservices
Yaroslav Tkachenko
 
Why actor-based systems are the best for microservices
Why actor-based systems are the best for microservicesWhy actor-based systems are the best for microservices
Why actor-based systems are the best for microservices
Yaroslav Tkachenko
 
Building Eventing Systems for Microservice Architecture
Building Eventing Systems for Microservice Architecture  Building Eventing Systems for Microservice Architecture
Building Eventing Systems for Microservice Architecture
Yaroslav Tkachenko
 
Быстрая и безболезненная разработка клиентской части веб-приложений
Быстрая и безболезненная разработка клиентской части веб-приложенийБыстрая и безболезненная разработка клиентской части веб-приложений
Быстрая и безболезненная разработка клиентской части веб-приложений
Yaroslav Tkachenko
 
Dynamic Change Data Capture with Flink CDC and Consistent Hashing
Dynamic Change Data Capture with Flink CDC and Consistent HashingDynamic Change Data Capture with Flink CDC and Consistent Hashing
Dynamic Change Data Capture with Flink CDC and Consistent Hashing
Yaroslav Tkachenko
 
Streaming SQL for Data Engineers: The Next Big Thing?
Streaming SQL for Data Engineers: The Next Big Thing?Streaming SQL for Data Engineers: The Next Big Thing?
Streaming SQL for Data Engineers: The Next Big Thing?
Yaroslav Tkachenko
 
Apache Flink Adoption at Shopify
Apache Flink Adoption at ShopifyApache Flink Adoption at Shopify
Apache Flink Adoption at Shopify
Yaroslav Tkachenko
 
Apache Kafka: New Features That You Might Not Know About
Apache Kafka: New Features That You Might Not Know AboutApache Kafka: New Features That You Might Not Know About
Apache Kafka: New Features That You Might Not Know About
Yaroslav Tkachenko
 
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Building Scalable and Extendable Data Pipeline for Call of Duty Games: Lesson...
Yaroslav Tkachenko
 
Designing Scalable and Extendable Data Pipeline for Call Of Duty Games
Designing Scalable and Extendable Data Pipeline for Call Of Duty GamesDesigning Scalable and Extendable Data Pipeline for Call Of Duty Games
Designing Scalable and Extendable Data Pipeline for Call Of Duty Games
Yaroslav Tkachenko
 
10 tips for making Bash a sane programming language
10 tips for making Bash a sane programming language10 tips for making Bash a sane programming language
10 tips for making Bash a sane programming language
Yaroslav Tkachenko
 
Actors or Not: Async Event Architectures
Actors or Not: Async Event ArchitecturesActors or Not: Async Event Architectures
Actors or Not: Async Event Architectures
Yaroslav Tkachenko
 
Kafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processingKafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processing
Yaroslav Tkachenko
 
Building Stateful Microservices With Akka
Building Stateful Microservices With AkkaBuilding Stateful Microservices With Akka
Building Stateful Microservices With Akka
Yaroslav Tkachenko
 
Querying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS AthenaQuerying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
Akka Microservices Architecture And Design
Akka Microservices Architecture And DesignAkka Microservices Architecture And Design
Akka Microservices Architecture And Design
Yaroslav Tkachenko
 
Why Actor-Based Systems Are The Best For Microservices
Why Actor-Based Systems Are The Best For MicroservicesWhy Actor-Based Systems Are The Best For Microservices
Why Actor-Based Systems Are The Best For Microservices
Yaroslav Tkachenko
 
Why actor-based systems are the best for microservices
Why actor-based systems are the best for microservicesWhy actor-based systems are the best for microservices
Why actor-based systems are the best for microservices
Yaroslav Tkachenko
 
Building Eventing Systems for Microservice Architecture
Building Eventing Systems for Microservice Architecture  Building Eventing Systems for Microservice Architecture
Building Eventing Systems for Microservice Architecture
Yaroslav Tkachenko
 
Быстрая и безболезненная разработка клиентской части веб-приложений
Быстрая и безболезненная разработка клиентской части веб-приложенийБыстрая и безболезненная разработка клиентской части веб-приложений
Быстрая и безболезненная разработка клиентской части веб-приложений
Yaroslav Tkachenko
 
Ad

Recently uploaded (20)

1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 

Bravo Six, Going Realtime. Transitioning Activision Data Pipeline to Streaming