SlideShare a Scribd company logo
What’s new with MongoDB &
Atlas, for you.
Sigfrido “Sig” Narváez
Executive Solution Architect, MongoDB
@signarvaez
DataConLA 2022
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
Traditional relational strengths
Expressive query
language and
secondary
indexes
Enterprise
security and
management
ACID
transactions
Additional NoSQL and big
data strengths and innovations
Native data
structures and
idiomatic drivers
Laptop, your data
center, multi-cloud
Scale and
distribution
Mission critical and general purpose
Time Series collections
Clustered indexes
Window functions
Live resharding
Client-Side FLE KMIP & cloud KMS
Atlas Serverless (preview)
Atlas Search fast facets, function
scores, synonyms
Long running snapshot reads
Sharded $lookup & $graphlookup
Majority write concern default
4x faster initial sync
Schema validation diagnostics
New MongoDB Shell GA
Resumable index builds
Rewritten Swift driver
Rewritten C# LINQ provider and
.NET Analyzer
PyMongoArrow API
New accumulator operators
Charts on Data Lake
x509 certificate rotation
Auditing ++
Atlas K8S controller
Ops Manager migration wizard
Doc-Level Concurrency
RAFT / Fast Failover
$lookup
Ops Manager
Compression
≤50 replicas
Aggregation ++
Encrypted and In-Memory
storage engines
BI Connector
Compass
2015 2016 2017 2018 2019 2020 2021-2022
3.0 & 3.2
WiredTiger
(Acquisition +
Integration) MongoDB Atlas ACID (Transactions)
Stable API & Rapid
Releases
Views Graph Processing
Zones ++Aggregation ++
Auto-balancing ++
Linearizable Reads Decimal
Intra-cluster Compression Log
Redaction Spark Connector
++ BI Connector ++
3.4
Change Streams
Retryable Writes
Schema Validation Expressive
$lookUp
Query Expressivity
Causal Consistency Consistent
Sharded Secondary Reads
Query Advisor
End to End Compression
WiredTiger 1m+ Collections
MongoDB BI Connector ++
R Driver
Charts (post GA)
Atlas X-Region Replication Atlas
Auto Storage Scaling
3.6
Replica set transactions
Atlas global clusters
40% Faster Shard Migrations
Atlas HIPAA
Atlas LDAP
Atlas Audit
Atlas Enc. Storage Engine
Atlas Backup Snapshots
Type Conversions
Snapshot Reads
Non-Blocking Sec. Reads
SHA-2 & TLS 1.1+
Compass Agg Pipeline Builder
Compass Export to Code
Free Monitoring Cloud Service
Ops Manager K8s Beta
4.0
Distributed Transactions
Client-Side Field Level Encryption
Materialized Views
Wildcard Indexes
Global PIT Reads
Large Transactions
Mutable Shard Key Values
Atlas Data Lake (Beta)
Atlas Auto Scaling (Beta)
Atlas Search (Beta)
Multi-CAs
Expressive Updates
Apache Kafka Connector
MongoDB Charts GA
Retryable Reads & Writes
New Index Builds
10x Faster stepDown
Storage Node Watchdog
Zstandard Compression
4.2
Union
Custom Agg Expressions
Refinable Shard Keys
Compound Hashed Shard Keys
Mirrored Reads
Hedged Reads
Resumable Initial Sync
Time-Based Oplog Retention
Simultaneous Indexing
Hidden Indexes
Streaming Replication
Global Read/Write Concerns
Rust & Swift Drivers GA
TLS 1.3 & Faster Client Auth
OCSP Stapling
Kerberos Utility
Atlas Online Archive
Auto-Scaling
Schema Recommendations
AWS IAM Auth & Atlas x509
Federated Queries
Multi-cloud clusters
4.4 5.x
The evolution of MongoDB
Multi-Cloud
2022-2023
6.x
Queryable encryption (preview)
Atlas Serverless GA
Column store indexes
Cluster-to-cluster sync
Independent analytic nodes
scaling
Flexible sync GA
Asymmetric sync preview
Kotlin and Flutter SDKs for Realm
$lookup perf improvements
Atlas CLI GA
Atlas Data API GA
Secondary index on
measurements for time series
Time series read perf +
Atlas Data Lake with fully
managed storage
Atlas Data Federation
Atlas Charts dashboard
embedding
Atlas SQL interface
Encrypted audit log
Change streams improvements
Announcement of relational to
MongoDB migrator
Developer Data
Platform
MongoDB Atlas: global cloud database
Intelligent
performance
optimization
Simplified data
architecture
Best-in-class security
and operations
Global and
multi-cloud reach
95+ Regions
Application Application Application
Application
RDBMS RDBMS RDBMS RDBMS
Key-Value DB Graph DB
Wide Column
Document DB
Search Engine
Search Engine
Mobile DB
Edge DB
Enterprise Data Warehouse
ETL
ETL
Caching Layer Caching Layer
Sync
ETL
ETL
Search Engine
Time Series DB
ETL
Sync
Data Lake
ETL ETL ETL
ETL
ETL
MongoDB’s Developer Data Platform aims to Reduce Technology Sprawl
Application D
Application C
Application B
Application A
Application D
Accelerate innovation with
One interface.
For any application.
Anywhere.
The MongoDB Atlas
Developer Data Platform
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
{
"_id" : ObjectId("5ad88534e3632e1a35a58d00"),
"name" : {
"first" : "John",
"last" : "Doe" },
"address" : [
{ "location" : "work",
"address" : {
"street" : "16 Hatfields",
"city" : "London",
"postal_code" : "SE1 8DJ"},
"geo" : { "type" : "Point", "coord" : [
-0.109081, 51.5065752]}},
+ {...}
],
"dob" : ISODate("1977-04-01T05:00:00Z"),
"retirement_fund" : NumberDecimal("1292815.75")
}
Contrasting
data models
Tabular (Relational) Data
Model
Related data split across multiple
records and tables
Document Data Model
Related data contained in a single, rich document
Basics: Replication & Sharding
Primary
Secondary
Secondary
Replication
Application
Driver
MongoS
Primary
Secondary
Secondary
Shard 1
Primary
Secondary
Secondary
Shard 2
Primary
Secondary
Secondary
Shard N
MongoS •••
•••
•••
Application
High availability
Replica sets
Horizontal scalability
Sharded Clusters
3 Sharding Strategies: Range, Hash & Zone
collection-level
Application
Driver
Application
Tunable Consistency
Highest Data Safety
Financial Transactions, PII, etc.
writeConcern: majority
readConcern: majority
Lowest-latency Reads
eCommerce & Media Catalogs, Content, etc
readPreference: nearest
Fastest Ingestion with tolerance for loss
IoT, Viewer/Gamer Telemetry
writeConcern: 0
readConcern: local
ACID Transactions
try (ClientSession clientSession = client.startSession()) {
clientSession.startTransaction();
collectionA.insertOne(clientSession, docOne);
collectionA.insertOne(clientSession, docTwo);
collectionB.updateOne(clientSession, findQry, updateStmt);
collectionC.deleteOne(clientSession, findDelQry);
clientSession.commitTransaction();
}
Schema Design Patterns: Subset
Subset Pattern
You want to display dependent information, however
only part of it. 2+ strong entities.
•The rest of the data is fetched only if needed
•Examples:
‒ The Cast of a Movie
‒ Last 10 Movies an Actor has starred in
https://www.mongodb.com/blog/post/
building-with-patterns-a-summary
Schema Design Patterns: Subset
Subset Pattern
You want to display dependent information, however
only part of it. 2+ strong entities.
•The rest of the data is fetched only if needed
•Examples:
‒ The Cast of a Movie
‒ Last 10 Movies an Actor has starred in
https://github.com/snarvaez/
mdb-distributedtx-subset
https://www.mongodb.com/blog/post/
building-with-patterns-a-summary
Multi-Cloud Distributed ACID Transaction
DEMO
Database driver and
query language
Search driver and
query language
Architectural complexity
Difficult to keep data in sync between
two separate systems. Requires its
own systems and skills
Operational overhead
More to provision, secure, upgrade,
patch, back up, monitor, scale, etc.
Lower developer productivity
Developers need to use different
query APIs for database and search
and coordinate schema changes
Application
Database Cluster Data Sync Search Cluster
Pain of bolting on a search engine to a database
Application
Same driver and
query API
Higher developer productivity
Build database and search features
using the same query API
Fully managed platform
Get the security, performance, and
reliability of Atlas
Simplified data architecture
Automatic data synchronization, even
as your data and schema changes
Atlas Database Atlas Search
MongoDB Atlas
MongoDB Atlas: integrated database and search
Atlas Search Architecture Atlas Search offers the features needed
to fine-tune your search results to help
users find what they need, including:
• Fuzzy search
• Autocomplete
• Filters and facets
• Synonyms
• Multi-data type support
• Multi-language support
• Highlighting
• Custom scoring
• Rich query language
• More-Like-This
• Dense Vector Search (Q3’22)
Just like that! Local Atlas Search Query:
db.getMongo().setReadPref("nearest");
db.movies.aggregate([
{ "$search": {
"compound": {
"must": [{
"text": {
"query": arg,
"path": ["plot","fullplot"],
"fuzzy": {
"maxEdits": 1,
"prefixLength": 1,
"maxExpansions": 256
}}}],
"should": [{
"text": {
"query": arg,
"path": "title",
"fuzzy": {
"maxEdits": 1,
"prefixLength": 1,
"maxExpansions": 256
}}}]
}}
}]);
At the end of the day, building
applications boils down to
accessing your data from the
database from your app in a
scalable and seamless manner
The core Atlas Application Services…
Database and
Scheduled Events can
be processed by
serverless functions
Data Triggers
Out-of-the-box
schema-based API
with ability to
customize with
custom resolvers
GraphQL API
Out-of-the-box
flexible-based API
with ability to
customize with HTTPS
Endpoints
Data API
Seamless mobile
client sync without the
REST APIs or conflict
resolution
Device Sync
…are supercharged by the supporting services
Email Password, API
Key, Custom Function,
JWT Authentication -
help provide identities
to the client and IP
Access list
Auth/Security
Define what data can
and cannot be
accessed
Rules/Permissions
Access the core
services from native
client libraries (React
Native, Web Browser,
iOS, Android, .NET,
Flutter)
SDKs
Can be run in the
context of Triggers,
APIs, or from SDKs
Serverless Functions
Integrate all of Atlas into your apps via a single endpoint
Atlas GraphQL API
GraphQL API
Serverless Compute
Layer over HTTPS
Database
Data Lake
Frontends
Federate into a
larger supergraph
Microservices and
3rd party services
Search
DEMO
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
The best way to visualize MongoDB data
Atlas
Charts
Fast
Easy
Powerful
Built for the
Document Model
No Data Movement
or Duplication
Integrated into
MongoDB Atlas
Share
& Collaborate
Drive Actionable
Insights
Create Engaging
Data Experiences
Atlas Charts in 2022
Dashboard
Embedding
Allow users to embed
a full dashboard
rather than a single
chart
Q1 2022 Q1 2022 H1 2022 2022 2022
Query Library
Reuse queries in
multiple charts
Streamlined Data
Sources
Create charts without
explicitly creating a
data source
Charts API Scheduled and
Async Queries
2022
Auto suggest
Charts for new
users
2022
Enterprise
Sharing
Interactive Filtering!
● Model their application
data as Documents
● Use MQL and the
Aggregation
Framework
● Want to query multiple
operational databases
with SQL-based BI Tools
● No time to learn or
switch to MQL
RESULT: Productivity RESULT: Friction
Developers SQL Users
Challenge: MongoDB + SQL Users
Atlas SQL Interface
Visualize data using Named
Connectors for BI tools
Use ODBC/JDBC drivers
for other SQL connections
Use the Atlas SQL interface to unlock access to
Atlas data from SQL based tools and SQL
centric users so that we can embrace the
ecosystem of people that want access to data
in our platform.
BI Tools ODBC/JDBC Drivers
Atlas SQL provides a first class SQL
experience for querying Atlas data
Atlas SQL Interface is currently in preview
Atlas SQL
interface
Connect to the Atlas SQL interface from the most popular BI tools
Step 3:
Add Named Connector
-or-
Connect via
JDBC/ODBC Driver
Atlas SQL
Drivers
Atlas Atlas SQL Interface BI or
Analytics
Tool
Atlas SQL
Connectors
Step 1:
Enable SQL Interface
Step 2:
Download Driver
Atlas SQL Connectors & Drivers
Atlas SQL Interface
Leverages Atlas Data Federation
as the query engine
Use MongoSQL, a MongoDB-Native SQL-92 compatible dialect
How does it work?
MongoDB
ODBC
MongoDB
JDBC
Tableau
Connector
PowerBI
Connector
Atlas Data
Federation • Federate queries across Atlas and AWS S3
without data movement or transformation to
power real-time applications.
• Seamlessly aggregate data across 1+
sources. Gather insight, and enrich data
without complex data pipelines.
• Convert MongoDB data to a columnar file
format and output to S3 to be consumed
by downstream teams for enabling
operational insights and modern app
experiences.
Control Plane
MongoDB Atlas Control
{Data Federation
Endpoint}
Data Plane
Atlas Data Federation architecture
Application & Services
Apps
• Analytic Engines
• Data Products
MongoDB Compass
• Data Exploration
MongoDB SQL Support
• Business Analytics
• Reporting
Data Science Tools
• Statistics
• Machine Learning
DRIVERS:
Javascript, Perl,
Python, C, C++,
Java, Ruby, Go,
Scala, R
MONGODB SHELL
Compute Plane
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Data Federation
computer node
Region 1
Region 2
Atlas Clusters
HTTP Store
BYO AWS S3
or
Atlas Data Lake
1+
Any Atlas
Cluster Type
1+
Atlas Data Lake is a combination of
several pieces of new functionality:
● Automated Data Extraction
● Partition Level Indexing
● MongoDB Native Analytic File
Format
● Object Storage
This set of functionality provides you a
workload isolated view of your cluster
data in economical object storage with
high performance for analytic type
queries.
Atlas Data Lake
A fully managed, high
performance, analytic
storage option in Atlas,
powered by cost-effective
cloud object storage.
PARTITION
INDEXES
Write
Metadata
Write
Data
Atlas
CLOUD DATABASE
AWS
S3
(Future)
A B C A B C A B C
Enriched Extraction, Partitioning & Auto-Balancing
ANALYTIC
FILE FORMAT
What is in a Partition Index?
● Unique Values or Ranges
● Sum
● Count
● Average
● ...
Improve query performance
● Improve point query
performance by finding
partitions faster.
● Additionally, certain aggregate
queries like Counts and Sums are
“covered” by the index.
FEDERATED
ENDPOINT
PARTITION INDEXES
COLUMNAR PARTITIONS
Note: All components of Atlas Data Lake are fully managed solutions that exist in the Atlas Infrastructure.
{
name: [‘ben’,
‘john’, ‘james’]
age: 34-75
}
{
name: [‘prem’,
‘sally’]
age: 23-75
}
{
name: [‘tifani’,
‘joe’]
age: 23-75
}
A B C A B C A B C
Partition Indexes
MongoDB
Spark Connector
• Massively parallel processing, machine learning
and streaming at scale
• Process data “in place” avoiding the latency of ETL
• Aggregation pre-filtering with secondary indexing
to only select data that’s required
• Read from secondaries isolate analytics workload
from business-critical operations
• Shard aware for data locality
SQL
Machine
Learning
Streaming Graph
Scala, Java, Python, R APIs
MongoDB Spark Connector
MongoDB Spark Connector
MongoDB Kafka Connector
Sink:
Source:
MongoDB Database
MongoDB
Connector
topicA
topicB
topicC
Kafka Cluster
Writes documents
to DB collection
Receives events from
Kafka Topic(s)
MongoDB Database
MongoDB
Connector
Kafka Cluster
Receives documents
from DB collection
Writes events to
Kafka Topics(s)
topicA
topicB
topicC
Change
Streams
Built in partnership with Confluent
Analytical Nodes
Analytics
Consumers
Primary Secondary Secondary Secondary
{Analytics Node}
Transactional
Applications
Secondary
{Analytics Node}
Rich MongoDB Query API and distributed architecture
allows you to run both Transactions and Analytics on
the same cluster with no resource contention
Higher Tier
(RAM / CPU) for
demanding
analytical & ML
Atlas → Atlas
On-prem → Atlas On-prem → On-prem
On-prem
cluster
Atlas cluster
Atlas cluster Atlas cluster
On-prem
cluster
On-prem
cluster
Atlas → On-Prem
Atlas cluster On-prem
cluster
Cluster-to-Cluster Sync
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
Real-time experiences at scale require
complex sync & conflict resolution
Data
synchronization
JSON
NATIVE OBJECT
ORM
MSG QUEUE
BACKEND OBJECT
REST CALL
TO API
PUSH SERVICE
PUSH
NOTIFICATION
COMPLEX RETRY &
ERROR HANDLING
POTENTIAL APP CRASH
OFFLINE?
WRITE CONFLICTS?
INVALID DATA?
SERVER
ERROR?
TIMED OUT?
Backend database
WRITE CONFLICTS?
Mobile devices
with local data
The easiest way to build and scale mobile apps
Atlas Device Sync
Out-of-the-box device-cloud
synchronization
Atlas
The leading
Developer Data Platform
on the cloud
Realm
Mobile-optimized
data store
Lightning fast
Super lightweight
No ORM needed
No DAO needed Dynamic, flexible sync options
Granular permissions
Built-in conflict resolution
Built-in error handling
Supported
frameworks
and languages
Kotlin/Kotlin Multiplatform
Swift/SwiftUI
.NET
React Native
Node.js / Javascript
Dart/Flutter (beta)
Xamarin
Unity
Java
Ionic
MAUI
Provides a single data layer across all platforms
WatchOS
Mobile devices
(iOS, Android)
Tablets
(iOS, Android, Windows)
Laptops, Desktops POS Systems
IoT (connected cars,
wearables,
equipment, etc.)
Atlas Device Sync
Atlas
How Device Sync works: dynamic queries
Customer
Store
Warehouse
Delivery.date == 01-01-2022
Inventory.store == 101
category == 'jeans'
AND size == 8
AND price < 40
Atlas Device Sync
MongoDB Atlas
Atlas Device Sync
Atlas Device Sync
How Device Sync works: hierarchical permissions
VP
Manager
Sales
Atlas Device Sync
MongoDB Atlas
Atlas Device Sync
Atlas Device Sync
Sales.team == 'NA-US'
Sales.team == 'US-WEST'
Sales.owner ==
'Bill Buckner'
How Device Sync works: document-level permissions
Banker
READ: ALL FIELDS
WRITE: ALL FIELDS
MongoDB Atlas
Atlas Device Sync
Trades
Support
Bank
User
Support
READ: ALL FIELDS
WRITE: SOME FIELDS
End User
READ: ALL FIELDS
WRITE: PROFILE ONLY
{
"_id": {
"$oid": "60e51a64d0ff67f998bc1732"
},
"name": "Jane Leaf",
"address": {
"street": "Bedford Ave"
"city": "New York"
}
"billing": {
"creditCard": "1234123412341234"
"balance": "20"
}
"vitals": [{
"visitDate": "May62022”
"bpm": "80”
"bloodPressure": "120/80"
]}
"prescriptions":[{
"name": "tylenol”
"quantity": "20”}
]}
}
How Device Sync works: field-level permissions
Patient
{
"_id": {
"$oid": "60e51a64d0ff67f998bc1732"
},
"name": "Jane Leaf",
"address": {
"street": "Bedford Ave"
"city": "New York"
}
"billing": {
"creditCard": "1234123412341234"
"balance": "20"
}
}
Billing
{
"_id": {
"$oid": "60e51a64d0ff67f998bc1732"
},
"name": "Jane Leaf",
"vitals": [{
"visitDate": "May62022”
"bpm": "80”
"bloodPressure": "120/80"
]}
"prescriptions":[{
"name": "tylenol”
"quantity": "20”}
]}
}
Doctor
ID
Address
Billing
Vitals
Prescription
Agenda
MongoDB Developer Data Platform
For Platform Developers
For Data Engineers & Scientists
For Mobile Developers
For DevOps & Security Engineers
What’s new with MongoDB & Atlas
Business Continuity
● 3 AZ’s default
● 3 Clouds: AWS, Google, Azure
● Cross-Region, Cross-Cloud &
Multi-Cloud
● Automatic-failover
● Continuous Backup
○ Second-resolution RPO <<<
● Auto Scale Compute & Storage
● Atlas Serverless
Automation, APM &
Integrations
● K8S Operator
● Hashicorp Terraform & Vault
● AWS CloudFormation
● REST API & CLI
● Built-in Metrics, Alerts,
Performance Advisor
● DataDog, Prometheus,
PagerDuty, etc.
DEMO
Migration to Atlas
● Live Migrate (hosted by Atlas)
● Push Migrate (from OpsMgr or Cloud Mgr)
-Enterprise customers - NEW!!
● Cluster to Cluster Replication - NEW!!!
● mongomirror (hosted by you)
MongoDB Security Assurance
HITRUST
https://www.mongodb.com/cloud/trust
What’s so hard about
“right to erasure”?
Deleting user data from the
database is easy
• But what about user data stored in
backups and logs... how do you delete
that?
• Risk of archived data being restored
and used
With Client-side FLE, you simply
destroy the encryption key for the
user’s data, and their PII is
unusable and unrecoverable:
in the DB, in backups, in logs…
...everywhere
Network (In-Flight) Storage (At-Rest) Memory (In-Use) Encryption Scope
TLS ❌ ❌
All data transmitted
over the network
Volume and
Storage Engine
❌ ❌
All data stored in the
database cluster
Client-Side FLE
Specific fields
containing
sensitive data
Addressing different threat models
End-to-end encryption for defense in depth
How Client-side FLE works
Accelerate innovation with
One interface.
For any application.
Anywhere.
The MongoDB Atlas
Developer Data Platform
db.runCommand(“Thank you!!”);
db.QnA.find({Q:“answer”}).explain();
Sig Narváez
Executive Solution Architect
Aug 13 2022
Sigfrido “Sig” Narváez
Executive Solution Architect, MongoDB
@signarvaez
Ad

More Related Content

What's hot (20)

The Basics of MongoDB
The Basics of MongoDBThe Basics of MongoDB
The Basics of MongoDB
valuebound
 
Etl testing strategies
Etl testing strategiesEtl testing strategies
Etl testing strategies
sivam_1
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Ravi Teja
 
How Retail Banks Use MongoDB
How Retail Banks Use MongoDBHow Retail Banks Use MongoDB
How Retail Banks Use MongoDB
MongoDB
 
Introduction to MongoDB and CRUD operations
Introduction to MongoDB and CRUD operationsIntroduction to MongoDB and CRUD operations
Introduction to MongoDB and CRUD operations
Anand Kumar
 
MongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB World 2019: Fast Machine Learning Development with MongoDBMongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB
 
Mongo db intro.pptx
Mongo db intro.pptxMongo db intro.pptx
Mongo db intro.pptx
JWORKS powered by Ordina
 
MongoDB Schema Design
MongoDB Schema DesignMongoDB Schema Design
MongoDB Schema Design
MongoDB
 
Intro To Mongo Db
Intro To Mongo DbIntro To Mongo Db
Intro To Mongo Db
chriskite
 
NOSQL and MongoDB Database
NOSQL and MongoDB DatabaseNOSQL and MongoDB Database
NOSQL and MongoDB Database
Tariqul islam
 
Data Streaming in Big Data Analysis
Data Streaming in Big Data AnalysisData Streaming in Big Data Analysis
Data Streaming in Big Data Analysis
Vincenzo Gulisano
 
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Simplilearn
 
Big data architectures and the data lake
Big data architectures and the data lakeBig data architectures and the data lake
Big data architectures and the data lake
James Serra
 
Grafana 7.0
Grafana 7.0Grafana 7.0
Grafana 7.0
Juraj Hantak
 
Data warehouse proposal
Data warehouse proposalData warehouse proposal
Data warehouse proposal
Peter Macdonald
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Airflow for Beginners
Airflow for BeginnersAirflow for Beginners
Airflow for Beginners
Varya Karpenko
 
MongoDB Atlas
MongoDB AtlasMongoDB Atlas
MongoDB Atlas
MongoDB
 
JSON-LD for RESTful services
JSON-LD for RESTful servicesJSON-LD for RESTful services
JSON-LD for RESTful services
Markus Lanthaler
 
The Basics of MongoDB
The Basics of MongoDBThe Basics of MongoDB
The Basics of MongoDB
valuebound
 
Etl testing strategies
Etl testing strategiesEtl testing strategies
Etl testing strategies
sivam_1
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Ravi Teja
 
How Retail Banks Use MongoDB
How Retail Banks Use MongoDBHow Retail Banks Use MongoDB
How Retail Banks Use MongoDB
MongoDB
 
Introduction to MongoDB and CRUD operations
Introduction to MongoDB and CRUD operationsIntroduction to MongoDB and CRUD operations
Introduction to MongoDB and CRUD operations
Anand Kumar
 
MongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB World 2019: Fast Machine Learning Development with MongoDBMongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB World 2019: Fast Machine Learning Development with MongoDB
MongoDB
 
MongoDB Schema Design
MongoDB Schema DesignMongoDB Schema Design
MongoDB Schema Design
MongoDB
 
Intro To Mongo Db
Intro To Mongo DbIntro To Mongo Db
Intro To Mongo Db
chriskite
 
NOSQL and MongoDB Database
NOSQL and MongoDB DatabaseNOSQL and MongoDB Database
NOSQL and MongoDB Database
Tariqul islam
 
Data Streaming in Big Data Analysis
Data Streaming in Big Data AnalysisData Streaming in Big Data Analysis
Data Streaming in Big Data Analysis
Vincenzo Gulisano
 
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Hive Tutorial | Hive Architecture | Hive Tutorial For Beginners | Hive In Had...
Simplilearn
 
Big data architectures and the data lake
Big data architectures and the data lakeBig data architectures and the data lake
Big data architectures and the data lake
James Serra
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
MongoDB Atlas
MongoDB AtlasMongoDB Atlas
MongoDB Atlas
MongoDB
 
JSON-LD for RESTful services
JSON-LD for RESTful servicesJSON-LD for RESTful services
JSON-LD for RESTful services
Markus Lanthaler
 

Similar to Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas (20)

Confluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & LearnConfluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & Learn
confluent
 
MongoDB 3.4 webinar
MongoDB 3.4 webinarMongoDB 3.4 webinar
MongoDB 3.4 webinar
Andrew Morgan
 
10 - MongoDB
10 - MongoDB10 - MongoDB
10 - MongoDB
Kangaroot
 
MongoDB Atlas Workshop - Singapore
MongoDB Atlas Workshop - SingaporeMongoDB Atlas Workshop - Singapore
MongoDB Atlas Workshop - Singapore
Ashnikbiz
 
Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...
Maxime Beugnet
 
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas JumpstartMongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB 4.0 새로운 기능 소개
MongoDB 4.0 새로운 기능 소개MongoDB 4.0 새로운 기능 소개
MongoDB 4.0 새로운 기능 소개
Ha-Yang(White) Moon
 
MongoDB is a document database. It stores data in a type of JSON format calle...
MongoDB is a document database. It stores data in a type of JSON format calle...MongoDB is a document database. It stores data in a type of JSON format calle...
MongoDB is a document database. It stores data in a type of JSON format calle...
amintafernandos
 
Time Series Analytics Azure ADX
Time Series Analytics Azure ADXTime Series Analytics Azure ADX
Time Series Analytics Azure ADX
Riccardo Zamana
 
Data saturday malta - ADX Azure Data Explorer overview
Data saturday malta - ADX Azure Data Explorer overviewData saturday malta - ADX Azure Data Explorer overview
Data saturday malta - ADX Azure Data Explorer overview
Riccardo Zamana
 
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Michael Rys
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
Big Data and NoSQL for Database and BI Pros
Big Data and NoSQL for Database and BI ProsBig Data and NoSQL for Database and BI Pros
Big Data and NoSQL for Database and BI Pros
Andrew Brust
 
Informatica slides
Informatica slidesInformatica slides
Informatica slides
sureshpaladi12
 
Denodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo Partner Connect: Technical Webinar - Ask Me AnythingDenodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo
 
Etosha - Data Asset Manager : Status and road map
Etosha - Data Asset Manager : Status and road mapEtosha - Data Asset Manager : Status and road map
Etosha - Data Asset Manager : Status and road map
Dr. Mirko Kämpf
 
Composable Parallel Processing in Apache Spark and Weld
Composable Parallel Processing in Apache Spark and WeldComposable Parallel Processing in Apache Spark and Weld
Composable Parallel Processing in Apache Spark and Weld
Databricks
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB .local Toronto 2019: MongoDB Atlas JumpstartMongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB
 
Confluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & LearnConfluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & Learn
confluent
 
10 - MongoDB
10 - MongoDB10 - MongoDB
10 - MongoDB
Kangaroot
 
MongoDB Atlas Workshop - Singapore
MongoDB Atlas Workshop - SingaporeMongoDB Atlas Workshop - Singapore
MongoDB Atlas Workshop - Singapore
Ashnikbiz
 
Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...
Maxime Beugnet
 
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas JumpstartMongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB 4.0 새로운 기능 소개
MongoDB 4.0 새로운 기능 소개MongoDB 4.0 새로운 기능 소개
MongoDB 4.0 새로운 기능 소개
Ha-Yang(White) Moon
 
MongoDB is a document database. It stores data in a type of JSON format calle...
MongoDB is a document database. It stores data in a type of JSON format calle...MongoDB is a document database. It stores data in a type of JSON format calle...
MongoDB is a document database. It stores data in a type of JSON format calle...
amintafernandos
 
Time Series Analytics Azure ADX
Time Series Analytics Azure ADXTime Series Analytics Azure ADX
Time Series Analytics Azure ADX
Riccardo Zamana
 
Data saturday malta - ADX Azure Data Explorer overview
Data saturday malta - ADX Azure Data Explorer overviewData saturday malta - ADX Azure Data Explorer overview
Data saturday malta - ADX Azure Data Explorer overview
Riccardo Zamana
 
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Best practices on Building a Big Data Analytics Solution (SQLBits 2018 Traini...
Michael Rys
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
Big Data and NoSQL for Database and BI Pros
Big Data and NoSQL for Database and BI ProsBig Data and NoSQL for Database and BI Pros
Big Data and NoSQL for Database and BI Pros
Andrew Brust
 
Denodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo Partner Connect: Technical Webinar - Ask Me AnythingDenodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo Partner Connect: Technical Webinar - Ask Me Anything
Denodo
 
Etosha - Data Asset Manager : Status and road map
Etosha - Data Asset Manager : Status and road mapEtosha - Data Asset Manager : Status and road map
Etosha - Data Asset Manager : Status and road map
Dr. Mirko Kämpf
 
Composable Parallel Processing in Apache Spark and Weld
Composable Parallel Processing in Apache Spark and WeldComposable Parallel Processing in Apache Spark and Weld
Composable Parallel Processing in Apache Spark and Weld
Databricks
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB .local Toronto 2019: MongoDB Atlas JumpstartMongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB
 
Ad

More from Data Con LA (20)

Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendationsData Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendationsData Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA
 
Ad

Recently uploaded (20)

Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 

Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas

  • 1. What’s new with MongoDB & Atlas, for you. Sigfrido “Sig” Narváez Executive Solution Architect, MongoDB @signarvaez DataConLA 2022
  • 2. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 3. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 4. Traditional relational strengths Expressive query language and secondary indexes Enterprise security and management ACID transactions Additional NoSQL and big data strengths and innovations Native data structures and idiomatic drivers Laptop, your data center, multi-cloud Scale and distribution Mission critical and general purpose
  • 5. Time Series collections Clustered indexes Window functions Live resharding Client-Side FLE KMIP & cloud KMS Atlas Serverless (preview) Atlas Search fast facets, function scores, synonyms Long running snapshot reads Sharded $lookup & $graphlookup Majority write concern default 4x faster initial sync Schema validation diagnostics New MongoDB Shell GA Resumable index builds Rewritten Swift driver Rewritten C# LINQ provider and .NET Analyzer PyMongoArrow API New accumulator operators Charts on Data Lake x509 certificate rotation Auditing ++ Atlas K8S controller Ops Manager migration wizard Doc-Level Concurrency RAFT / Fast Failover $lookup Ops Manager Compression ≤50 replicas Aggregation ++ Encrypted and In-Memory storage engines BI Connector Compass 2015 2016 2017 2018 2019 2020 2021-2022 3.0 & 3.2 WiredTiger (Acquisition + Integration) MongoDB Atlas ACID (Transactions) Stable API & Rapid Releases Views Graph Processing Zones ++Aggregation ++ Auto-balancing ++ Linearizable Reads Decimal Intra-cluster Compression Log Redaction Spark Connector ++ BI Connector ++ 3.4 Change Streams Retryable Writes Schema Validation Expressive $lookUp Query Expressivity Causal Consistency Consistent Sharded Secondary Reads Query Advisor End to End Compression WiredTiger 1m+ Collections MongoDB BI Connector ++ R Driver Charts (post GA) Atlas X-Region Replication Atlas Auto Storage Scaling 3.6 Replica set transactions Atlas global clusters 40% Faster Shard Migrations Atlas HIPAA Atlas LDAP Atlas Audit Atlas Enc. Storage Engine Atlas Backup Snapshots Type Conversions Snapshot Reads Non-Blocking Sec. Reads SHA-2 & TLS 1.1+ Compass Agg Pipeline Builder Compass Export to Code Free Monitoring Cloud Service Ops Manager K8s Beta 4.0 Distributed Transactions Client-Side Field Level Encryption Materialized Views Wildcard Indexes Global PIT Reads Large Transactions Mutable Shard Key Values Atlas Data Lake (Beta) Atlas Auto Scaling (Beta) Atlas Search (Beta) Multi-CAs Expressive Updates Apache Kafka Connector MongoDB Charts GA Retryable Reads & Writes New Index Builds 10x Faster stepDown Storage Node Watchdog Zstandard Compression 4.2 Union Custom Agg Expressions Refinable Shard Keys Compound Hashed Shard Keys Mirrored Reads Hedged Reads Resumable Initial Sync Time-Based Oplog Retention Simultaneous Indexing Hidden Indexes Streaming Replication Global Read/Write Concerns Rust & Swift Drivers GA TLS 1.3 & Faster Client Auth OCSP Stapling Kerberos Utility Atlas Online Archive Auto-Scaling Schema Recommendations AWS IAM Auth & Atlas x509 Federated Queries Multi-cloud clusters 4.4 5.x The evolution of MongoDB Multi-Cloud 2022-2023 6.x Queryable encryption (preview) Atlas Serverless GA Column store indexes Cluster-to-cluster sync Independent analytic nodes scaling Flexible sync GA Asymmetric sync preview Kotlin and Flutter SDKs for Realm $lookup perf improvements Atlas CLI GA Atlas Data API GA Secondary index on measurements for time series Time series read perf + Atlas Data Lake with fully managed storage Atlas Data Federation Atlas Charts dashboard embedding Atlas SQL interface Encrypted audit log Change streams improvements Announcement of relational to MongoDB migrator Developer Data Platform
  • 6. MongoDB Atlas: global cloud database Intelligent performance optimization Simplified data architecture Best-in-class security and operations Global and multi-cloud reach 95+ Regions
  • 7. Application Application Application Application RDBMS RDBMS RDBMS RDBMS Key-Value DB Graph DB Wide Column Document DB Search Engine Search Engine Mobile DB Edge DB Enterprise Data Warehouse ETL ETL Caching Layer Caching Layer Sync ETL ETL Search Engine Time Series DB ETL Sync Data Lake ETL ETL ETL ETL ETL MongoDB’s Developer Data Platform aims to Reduce Technology Sprawl
  • 8. Application D Application C Application B Application A Application D
  • 9. Accelerate innovation with One interface. For any application. Anywhere. The MongoDB Atlas Developer Data Platform
  • 10. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 12. { "_id" : ObjectId("5ad88534e3632e1a35a58d00"), "name" : { "first" : "John", "last" : "Doe" }, "address" : [ { "location" : "work", "address" : { "street" : "16 Hatfields", "city" : "London", "postal_code" : "SE1 8DJ"}, "geo" : { "type" : "Point", "coord" : [ -0.109081, 51.5065752]}}, + {...} ], "dob" : ISODate("1977-04-01T05:00:00Z"), "retirement_fund" : NumberDecimal("1292815.75") } Contrasting data models Tabular (Relational) Data Model Related data split across multiple records and tables Document Data Model Related data contained in a single, rich document
  • 13. Basics: Replication & Sharding Primary Secondary Secondary Replication Application Driver MongoS Primary Secondary Secondary Shard 1 Primary Secondary Secondary Shard 2 Primary Secondary Secondary Shard N MongoS ••• ••• ••• Application High availability Replica sets Horizontal scalability Sharded Clusters 3 Sharding Strategies: Range, Hash & Zone collection-level Application Driver Application
  • 14. Tunable Consistency Highest Data Safety Financial Transactions, PII, etc. writeConcern: majority readConcern: majority Lowest-latency Reads eCommerce & Media Catalogs, Content, etc readPreference: nearest Fastest Ingestion with tolerance for loss IoT, Viewer/Gamer Telemetry writeConcern: 0 readConcern: local
  • 15. ACID Transactions try (ClientSession clientSession = client.startSession()) { clientSession.startTransaction(); collectionA.insertOne(clientSession, docOne); collectionA.insertOne(clientSession, docTwo); collectionB.updateOne(clientSession, findQry, updateStmt); collectionC.deleteOne(clientSession, findDelQry); clientSession.commitTransaction(); }
  • 16. Schema Design Patterns: Subset Subset Pattern You want to display dependent information, however only part of it. 2+ strong entities. •The rest of the data is fetched only if needed •Examples: ‒ The Cast of a Movie ‒ Last 10 Movies an Actor has starred in https://www.mongodb.com/blog/post/ building-with-patterns-a-summary
  • 17. Schema Design Patterns: Subset Subset Pattern You want to display dependent information, however only part of it. 2+ strong entities. •The rest of the data is fetched only if needed •Examples: ‒ The Cast of a Movie ‒ Last 10 Movies an Actor has starred in https://github.com/snarvaez/ mdb-distributedtx-subset https://www.mongodb.com/blog/post/ building-with-patterns-a-summary Multi-Cloud Distributed ACID Transaction
  • 18. DEMO
  • 19. Database driver and query language Search driver and query language Architectural complexity Difficult to keep data in sync between two separate systems. Requires its own systems and skills Operational overhead More to provision, secure, upgrade, patch, back up, monitor, scale, etc. Lower developer productivity Developers need to use different query APIs for database and search and coordinate schema changes Application Database Cluster Data Sync Search Cluster Pain of bolting on a search engine to a database
  • 20. Application Same driver and query API Higher developer productivity Build database and search features using the same query API Fully managed platform Get the security, performance, and reliability of Atlas Simplified data architecture Automatic data synchronization, even as your data and schema changes Atlas Database Atlas Search MongoDB Atlas MongoDB Atlas: integrated database and search
  • 21. Atlas Search Architecture Atlas Search offers the features needed to fine-tune your search results to help users find what they need, including: • Fuzzy search • Autocomplete • Filters and facets • Synonyms • Multi-data type support • Multi-language support • Highlighting • Custom scoring • Rich query language • More-Like-This • Dense Vector Search (Q3’22)
  • 22. Just like that! Local Atlas Search Query: db.getMongo().setReadPref("nearest"); db.movies.aggregate([ { "$search": { "compound": { "must": [{ "text": { "query": arg, "path": ["plot","fullplot"], "fuzzy": { "maxEdits": 1, "prefixLength": 1, "maxExpansions": 256 }}}], "should": [{ "text": { "query": arg, "path": "title", "fuzzy": { "maxEdits": 1, "prefixLength": 1, "maxExpansions": 256 }}}] }} }]);
  • 23. At the end of the day, building applications boils down to accessing your data from the database from your app in a scalable and seamless manner
  • 24. The core Atlas Application Services… Database and Scheduled Events can be processed by serverless functions Data Triggers Out-of-the-box schema-based API with ability to customize with custom resolvers GraphQL API Out-of-the-box flexible-based API with ability to customize with HTTPS Endpoints Data API Seamless mobile client sync without the REST APIs or conflict resolution Device Sync
  • 25. …are supercharged by the supporting services Email Password, API Key, Custom Function, JWT Authentication - help provide identities to the client and IP Access list Auth/Security Define what data can and cannot be accessed Rules/Permissions Access the core services from native client libraries (React Native, Web Browser, iOS, Android, .NET, Flutter) SDKs Can be run in the context of Triggers, APIs, or from SDKs Serverless Functions
  • 26. Integrate all of Atlas into your apps via a single endpoint Atlas GraphQL API GraphQL API Serverless Compute Layer over HTTPS Database Data Lake Frontends Federate into a larger supergraph Microservices and 3rd party services Search
  • 27. DEMO
  • 28. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 29. The best way to visualize MongoDB data Atlas Charts Fast Easy Powerful Built for the Document Model No Data Movement or Duplication Integrated into MongoDB Atlas Share & Collaborate Drive Actionable Insights Create Engaging Data Experiences
  • 30. Atlas Charts in 2022 Dashboard Embedding Allow users to embed a full dashboard rather than a single chart Q1 2022 Q1 2022 H1 2022 2022 2022 Query Library Reuse queries in multiple charts Streamlined Data Sources Create charts without explicitly creating a data source Charts API Scheduled and Async Queries 2022 Auto suggest Charts for new users 2022 Enterprise Sharing
  • 32. ● Model their application data as Documents ● Use MQL and the Aggregation Framework ● Want to query multiple operational databases with SQL-based BI Tools ● No time to learn or switch to MQL RESULT: Productivity RESULT: Friction Developers SQL Users Challenge: MongoDB + SQL Users
  • 33. Atlas SQL Interface Visualize data using Named Connectors for BI tools Use ODBC/JDBC drivers for other SQL connections Use the Atlas SQL interface to unlock access to Atlas data from SQL based tools and SQL centric users so that we can embrace the ecosystem of people that want access to data in our platform. BI Tools ODBC/JDBC Drivers Atlas SQL provides a first class SQL experience for querying Atlas data Atlas SQL Interface is currently in preview Atlas SQL interface Connect to the Atlas SQL interface from the most popular BI tools
  • 34. Step 3: Add Named Connector -or- Connect via JDBC/ODBC Driver Atlas SQL Drivers Atlas Atlas SQL Interface BI or Analytics Tool Atlas SQL Connectors Step 1: Enable SQL Interface Step 2: Download Driver Atlas SQL Connectors & Drivers Atlas SQL Interface Leverages Atlas Data Federation as the query engine Use MongoSQL, a MongoDB-Native SQL-92 compatible dialect How does it work? MongoDB ODBC MongoDB JDBC Tableau Connector PowerBI Connector
  • 35. Atlas Data Federation • Federate queries across Atlas and AWS S3 without data movement or transformation to power real-time applications. • Seamlessly aggregate data across 1+ sources. Gather insight, and enrich data without complex data pipelines. • Convert MongoDB data to a columnar file format and output to S3 to be consumed by downstream teams for enabling operational insights and modern app experiences.
  • 36. Control Plane MongoDB Atlas Control {Data Federation Endpoint} Data Plane Atlas Data Federation architecture Application & Services Apps • Analytic Engines • Data Products MongoDB Compass • Data Exploration MongoDB SQL Support • Business Analytics • Reporting Data Science Tools • Statistics • Machine Learning DRIVERS: Javascript, Perl, Python, C, C++, Java, Ruby, Go, Scala, R MONGODB SHELL Compute Plane Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Data Federation computer node Region 1 Region 2 Atlas Clusters HTTP Store BYO AWS S3 or Atlas Data Lake 1+ Any Atlas Cluster Type 1+
  • 37. Atlas Data Lake is a combination of several pieces of new functionality: ● Automated Data Extraction ● Partition Level Indexing ● MongoDB Native Analytic File Format ● Object Storage This set of functionality provides you a workload isolated view of your cluster data in economical object storage with high performance for analytic type queries. Atlas Data Lake A fully managed, high performance, analytic storage option in Atlas, powered by cost-effective cloud object storage.
  • 38. PARTITION INDEXES Write Metadata Write Data Atlas CLOUD DATABASE AWS S3 (Future) A B C A B C A B C Enriched Extraction, Partitioning & Auto-Balancing ANALYTIC FILE FORMAT
  • 39. What is in a Partition Index? ● Unique Values or Ranges ● Sum ● Count ● Average ● ... Improve query performance ● Improve point query performance by finding partitions faster. ● Additionally, certain aggregate queries like Counts and Sums are “covered” by the index. FEDERATED ENDPOINT PARTITION INDEXES COLUMNAR PARTITIONS Note: All components of Atlas Data Lake are fully managed solutions that exist in the Atlas Infrastructure. { name: [‘ben’, ‘john’, ‘james’] age: 34-75 } { name: [‘prem’, ‘sally’] age: 23-75 } { name: [‘tifani’, ‘joe’] age: 23-75 } A B C A B C A B C Partition Indexes
  • 40. MongoDB Spark Connector • Massively parallel processing, machine learning and streaming at scale • Process data “in place” avoiding the latency of ETL • Aggregation pre-filtering with secondary indexing to only select data that’s required • Read from secondaries isolate analytics workload from business-critical operations • Shard aware for data locality SQL Machine Learning Streaming Graph Scala, Java, Python, R APIs MongoDB Spark Connector MongoDB Spark Connector
  • 41. MongoDB Kafka Connector Sink: Source: MongoDB Database MongoDB Connector topicA topicB topicC Kafka Cluster Writes documents to DB collection Receives events from Kafka Topic(s) MongoDB Database MongoDB Connector Kafka Cluster Receives documents from DB collection Writes events to Kafka Topics(s) topicA topicB topicC Change Streams Built in partnership with Confluent
  • 42. Analytical Nodes Analytics Consumers Primary Secondary Secondary Secondary {Analytics Node} Transactional Applications Secondary {Analytics Node} Rich MongoDB Query API and distributed architecture allows you to run both Transactions and Analytics on the same cluster with no resource contention Higher Tier (RAM / CPU) for demanding analytical & ML
  • 43. Atlas → Atlas On-prem → Atlas On-prem → On-prem On-prem cluster Atlas cluster Atlas cluster Atlas cluster On-prem cluster On-prem cluster Atlas → On-Prem Atlas cluster On-prem cluster Cluster-to-Cluster Sync
  • 44. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 45. Real-time experiences at scale require complex sync & conflict resolution Data synchronization JSON NATIVE OBJECT ORM MSG QUEUE BACKEND OBJECT REST CALL TO API PUSH SERVICE PUSH NOTIFICATION COMPLEX RETRY & ERROR HANDLING POTENTIAL APP CRASH OFFLINE? WRITE CONFLICTS? INVALID DATA? SERVER ERROR? TIMED OUT? Backend database WRITE CONFLICTS? Mobile devices with local data
  • 46. The easiest way to build and scale mobile apps Atlas Device Sync Out-of-the-box device-cloud synchronization Atlas The leading Developer Data Platform on the cloud Realm Mobile-optimized data store Lightning fast Super lightweight No ORM needed No DAO needed Dynamic, flexible sync options Granular permissions Built-in conflict resolution Built-in error handling
  • 47. Supported frameworks and languages Kotlin/Kotlin Multiplatform Swift/SwiftUI .NET React Native Node.js / Javascript Dart/Flutter (beta) Xamarin Unity Java Ionic MAUI
  • 48. Provides a single data layer across all platforms WatchOS Mobile devices (iOS, Android) Tablets (iOS, Android, Windows) Laptops, Desktops POS Systems IoT (connected cars, wearables, equipment, etc.) Atlas Device Sync Atlas
  • 49. How Device Sync works: dynamic queries Customer Store Warehouse Delivery.date == 01-01-2022 Inventory.store == 101 category == 'jeans' AND size == 8 AND price < 40 Atlas Device Sync MongoDB Atlas Atlas Device Sync Atlas Device Sync
  • 50. How Device Sync works: hierarchical permissions VP Manager Sales Atlas Device Sync MongoDB Atlas Atlas Device Sync Atlas Device Sync Sales.team == 'NA-US' Sales.team == 'US-WEST' Sales.owner == 'Bill Buckner'
  • 51. How Device Sync works: document-level permissions Banker READ: ALL FIELDS WRITE: ALL FIELDS MongoDB Atlas Atlas Device Sync Trades Support Bank User Support READ: ALL FIELDS WRITE: SOME FIELDS End User READ: ALL FIELDS WRITE: PROFILE ONLY
  • 52. { "_id": { "$oid": "60e51a64d0ff67f998bc1732" }, "name": "Jane Leaf", "address": { "street": "Bedford Ave" "city": "New York" } "billing": { "creditCard": "1234123412341234" "balance": "20" } "vitals": [{ "visitDate": "May62022” "bpm": "80” "bloodPressure": "120/80" ]} "prescriptions":[{ "name": "tylenol” "quantity": "20”} ]} } How Device Sync works: field-level permissions Patient { "_id": { "$oid": "60e51a64d0ff67f998bc1732" }, "name": "Jane Leaf", "address": { "street": "Bedford Ave" "city": "New York" } "billing": { "creditCard": "1234123412341234" "balance": "20" } } Billing { "_id": { "$oid": "60e51a64d0ff67f998bc1732" }, "name": "Jane Leaf", "vitals": [{ "visitDate": "May62022” "bpm": "80” "bloodPressure": "120/80" ]} "prescriptions":[{ "name": "tylenol” "quantity": "20”} ]} } Doctor ID Address Billing Vitals Prescription
  • 53. Agenda MongoDB Developer Data Platform For Platform Developers For Data Engineers & Scientists For Mobile Developers For DevOps & Security Engineers What’s new with MongoDB & Atlas
  • 54. Business Continuity ● 3 AZ’s default ● 3 Clouds: AWS, Google, Azure ● Cross-Region, Cross-Cloud & Multi-Cloud ● Automatic-failover ● Continuous Backup ○ Second-resolution RPO <<< ● Auto Scale Compute & Storage ● Atlas Serverless
  • 55. Automation, APM & Integrations ● K8S Operator ● Hashicorp Terraform & Vault ● AWS CloudFormation ● REST API & CLI ● Built-in Metrics, Alerts, Performance Advisor ● DataDog, Prometheus, PagerDuty, etc.
  • 56. DEMO Migration to Atlas ● Live Migrate (hosted by Atlas) ● Push Migrate (from OpsMgr or Cloud Mgr) -Enterprise customers - NEW!! ● Cluster to Cluster Replication - NEW!!! ● mongomirror (hosted by you)
  • 58. What’s so hard about “right to erasure”? Deleting user data from the database is easy • But what about user data stored in backups and logs... how do you delete that? • Risk of archived data being restored and used With Client-side FLE, you simply destroy the encryption key for the user’s data, and their PII is unusable and unrecoverable: in the DB, in backups, in logs… ...everywhere
  • 59. Network (In-Flight) Storage (At-Rest) Memory (In-Use) Encryption Scope TLS ❌ ❌ All data transmitted over the network Volume and Storage Engine ❌ ❌ All data stored in the database cluster Client-Side FLE Specific fields containing sensitive data Addressing different threat models End-to-end encryption for defense in depth
  • 61. Accelerate innovation with One interface. For any application. Anywhere. The MongoDB Atlas Developer Data Platform
  • 62. db.runCommand(“Thank you!!”); db.QnA.find({Q:“answer”}).explain(); Sig Narváez Executive Solution Architect Aug 13 2022 Sigfrido “Sig” Narváez Executive Solution Architect, MongoDB @signarvaez