SlideShare a Scribd company logo
1
1
Data Mining:
Concepts and Techniques
(3rd ed.)
— Chapter 1 —
Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University
©2011 Han, Kamber & Pei. All rights reserved.
2
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
3
Why Data Mining?
 The Explosive Growth of Data: from terabytes to petabytes
 Data collection and data availability
 Automated data collection tools, database systems, Web,
computerized society
 Major sources of abundant data
 Business: Web, e-commerce, transactions, stocks, …
 Science: Remote sensing, bioinformatics, scientific simulation, …
 Society and everyone: news, digital cameras, YouTube
 We are drowning in data, but starving for knowledge!
 “Necessity is the mother of invention”—Data mining—Automated
analysis of massive data sets
4
Evolution of Sciences
 Before 1600, empirical science
 1600-1950s, theoretical science
 Each discipline has grown a theoretical component. Theoretical models often
motivate experiments and generalize our understanding.
 1950s-1990s, computational science
 Over the last 50 years, most disciplines have grown a third, computational branch
(e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 Computational Science traditionally meant simulation. It grew out of our inability to
find closed-form solutions for complex mathematical models.
 1990-now, data science
 The flood of data from new scientific instruments and simulations
 The ability to economically store and manage petabytes of data online
 The Internet and computing Grid that makes all these archives universally accessible
 Scientific info. management, acquisition, organization, query, and visualization tasks
scale almost linearly with data volumes. Data mining is a major new challenge!
 Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science,
Comm. ACM, 45(11): 50-54, Nov. 2002
5
Evolution of Database Technology
 1960s:
 Data collection, database creation, IMS and network DBMS
 1970s:
 Relational data model, relational DBMS implementation
 1980s:
 RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 Application-oriented DBMS (spatial, scientific, engineering, etc.)
 1990s:
 Data mining, data warehousing, multimedia databases, and Web
databases
 2000s
 Stream data management and mining
 Data mining and its applications
 Web technology (XML, data integration) and global information systems
6
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
7
What Is Data Mining?
 Data mining (knowledge discovery from data)
 Extraction of interesting (non-trivial, implicit, previously
unknown and potentially useful) patterns or knowledge from
huge amount of data
 Data mining: a misnomer?
 Alternative names
 Knowledge discovery (mining) in databases (KDD), knowledge
extraction, data/pattern analysis, data archeology, data
dredging, information harvesting, business intelligence, etc.
 Watch out: Is everything “data mining”?
 Simple search and query processing
 (Deductive) expert systems
8
Knowledge Discovery (KDD) Process
 This is a view from typical
database systems and data
warehousing communities
 Data mining plays an essential
role in the knowledge discovery
process
Data Cleaning
Data Integration
Databases
Data Warehouse
Task-relevant Data
Selection
Data Mining
Pattern Evaluation
9
Example: A Web Mining Framework
 Web mining usually involves
 Data cleaning
 Data integration from multiple sources
 Warehousing the data
 Data cube construction
 Data selection for data mining
 Data mining
 Presentation of the mining results
 Patterns and knowledge to be used or stored into
knowledge-base
10
Data Mining in Business Intelligence
Increasing potential
to support
business decisions End User
Business
Analyst
Data
Analyst
DBA
Decision
Making
Data Presentation
Visualization Techniques
Data Mining
Information Discovery
Data Exploration
Statistical Summary, Querying, and Reporting
Data Preprocessing/Integration, Data Warehouses
Data Sources
Paper, Files, Web documents, Scientific experiments, Database Systems
11
Example: Mining vs. Data Exploration
 Business intelligence view
 Warehouse, data cube, reporting but not much mining
 Business objects vs. data mining tools
 Supply chain example: tools
 Data presentation
 Exploration
12
KDD Process: A Typical View from ML and
Statistics
Input Data Data
Mining
Data Pre-
Processing
Post-
Processing
 This is a view from typical machine learning and statistics communities
Data integration
Normalization
Feature selection
Dimension reduction
Pattern discovery
Association & correlation
Classification
Clustering
Outlier analysis
… … … …
Pattern evaluation
Pattern selection
Pattern interpretation
Pattern visualization
13
Example: Medical Data Mining
 Health care & medical data mining – often
adopted such a view in statistics and machine
learning
 Preprocessing of the data (including feature
extraction and dimension reduction)
 Classification or/and clustering processes
 Post-processing for presentation
14
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
15
Multi-Dimensional View of Data Mining
 Data to be mined
 Database data (extended-relational, object-oriented, heterogeneous,
legacy), data warehouse, transactional data, stream, spatiotemporal,
time-series, sequence, text and web, multi-media, graphs & social
and information networks
 Knowledge to be mined (or: Data mining functions)
 Characterization, discrimination, association, classification,
clustering, trend/deviation, outlier analysis, etc.
 Descriptive vs. predictive data mining
 Multiple/integrated functions and mining at multiple levels
 Techniques utilized
 Data-intensive, data warehouse (OLAP), machine learning, statistics,
pattern recognition, visualization, high-performance, etc.
 Applications adapted
 Retail, telecommunication, banking, fraud analysis, bio-data mining,
stock market analysis, text mining, Web mining, etc.
16
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
17
Data Mining: On What Kinds of Data?
 Database-oriented data sets and applications
 Relational database, data warehouse, transactional database
 Advanced data sets and advanced applications
 Data streams and sensor data
 Time-series data, temporal data, sequence data (incl. bio-sequences)
 Structure data, graphs, social networks and multi-linked data
 Object-relational databases
 Heterogeneous databases and legacy databases
 Spatial data and spatiotemporal data
 Multimedia database
 Text databases
 The World-Wide Web
18
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
19
Data Mining Function: (1) Generalization
 Information integration and data warehouse construction
 Data cleaning, transformation, integration, and
multidimensional data model
 Data cube technology
 Scalable methods for computing (i.e., materializing)
multidimensional aggregates
 OLAP (online analytical processing)
 Multidimensional concept description: Characterization
and discrimination
 Generalize, summarize, and contrast data
characteristics, e.g., dry vs. wet region
20
Data Mining Function: (2) Association and
Correlation Analysis
 Frequent patterns (or frequent itemsets)
 What items are frequently purchased together in your
Walmart?
 Association, correlation vs. causality
 A typical association rule
 Diaper  Beer [0.5%, 75%] (support, confidence)
 Are strongly associated items also strongly correlated?
 How to mine such patterns and rules efficiently in large
datasets?
 How to use such patterns for classification, clustering,
and other applications?
21
Data Mining Function: (3) Classification
 Classification and label prediction
 Construct models (functions) based on some training examples
 Describe and distinguish classes or concepts for future prediction
 E.g., classify countries based on (climate), or classify cars
based on (gas mileage)
 Predict some unknown class labels
 Typical methods
 Decision trees, naïve Bayesian classification, support vector
machines, neural networks, rule-based classification, pattern-
based classification, logistic regression, …
 Typical applications:
 Credit card fraud detection, direct marketing, classifying stars,
diseases, web-pages, …
22
Data Mining Function: (4) Cluster Analysis
 Unsupervised learning (i.e., Class label is unknown)
 Group data to form new categories (i.e., clusters), e.g.,
cluster houses to find distribution patterns
 Principle: Maximizing intra-class similarity & minimizing
interclass similarity
 Many methods and applications
23
Data Mining Function: (5) Outlier Analysis
 Outlier analysis
 Outlier: A data object that does not comply with the general
behavior of the data
 Noise or exception? ― One person’s garbage could be another
person’s treasure
 Methods: by product of clustering or regression analysis, …
 Useful in fraud detection, rare events analysis
24
Time and Ordering: Sequential Pattern,
Trend and Evolution Analysis
 Sequence, trend and evolution analysis
 Trend, time-series, and deviation analysis: e.g.,
regression and value prediction
 Sequential pattern mining
 e.g., first buy digital camera, then buy large SD
memory cards
 Periodicity analysis
 Motifs and biological sequence analysis
 Approximate and consecutive motifs
 Similarity-based analysis
 Mining data streams
 Ordered, time-varying, potentially infinite, data streams
25
Structure and Network Analysis
 Graph mining
 Finding frequent subgraphs (e.g., chemical compounds), trees
(XML), substructures (web fragments)
 Information network analysis
 Social networks: actors (objects, nodes) and relationships (edges)
 e.g., author networks in CS, terrorist networks
 Multiple heterogeneous networks
 A person could be multiple information networks: friends,
family, classmates, …
 Links carry a lot of semantic information: Link mining
 Web mining
 Web is a big information network: from PageRank to Google
 Analysis of Web information networks
 Web community discovery, opinion mining, usage mining, …
26
Evaluation of Knowledge
 Are all mined knowledge interesting?
 One can mine tremendous amount of “patterns” and knowledge
 Some may fit only certain dimension space (time, location, …)
 Some may not be representative, may be transient, …
 Evaluation of mined knowledge → directly mine only
interesting knowledge?
 Descriptive vs. predictive
 Coverage
 Typicality vs. novelty
 Accuracy
 Timeliness
 …
27
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
28
Data Mining: Confluence of Multiple Disciplines
Data Mining
Machine
Learning
Statistics
Applications
Algorithm
Pattern
Recognition
High-Performance
Computing
Visualization
Database
Technology
29
Why Confluence of Multiple Disciplines?
 Tremendous amount of data
 Algorithms must be highly scalable to handle such as tera-bytes of
data
 High-dimensionality of data
 Micro-array may have tens of thousands of dimensions
 High complexity of data
 Data streams and sensor data
 Time-series data, temporal data, sequence data
 Structure data, graphs, social networks and multi-linked data
 Heterogeneous databases and legacy databases
 Spatial, spatiotemporal, multimedia, text and Web data
 Software programs, scientific simulations
 New and sophisticated applications
30
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
31
Applications of Data Mining
 Web page analysis: from web page classification, clustering to
PageRank & HITS algorithms
 Collaborative analysis & recommender systems
 Basket data analysis to targeted marketing
 Biological and medical data analysis: classification, cluster analysis
(microarray data analysis), biological sequence analysis, biological
network analysis
 Data mining and software engineering (e.g., IEEE Computer, Aug.
2009 issue)
 From major dedicated data mining systems/tools (e.g., SAS, MS SQL-
Server Analysis Manager, Oracle Data Mining Tools) to invisible data
mining
32
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
33
Major Issues in Data Mining (1)
 Mining Methodology
 Mining various and new kinds of knowledge
 Mining knowledge in multi-dimensional space
 Data mining: An interdisciplinary effort
 Boosting the power of discovery in a networked environment
 Handling noise, uncertainty, and incompleteness of data
 Pattern evaluation and pattern- or constraint-guided mining
 User Interaction
 Interactive mining
 Incorporation of background knowledge
 Presentation and visualization of data mining results
34
Major Issues in Data Mining (2)
 Efficiency and Scalability
 Efficiency and scalability of data mining algorithms
 Parallel, distributed, stream, and incremental mining methods
 Diversity of data types
 Handling complex types of data
 Mining dynamic, networked, and global data repositories
 Data mining and society
 Social impacts of data mining
 Privacy-preserving data mining
 Invisible data mining
35
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
36
A Brief History of Data Mining Society
 1989 IJCAI Workshop on Knowledge Discovery in Databases
 Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley,
1991)
 1991-1994 Workshops on Knowledge Discovery in Databases
 Advances in Knowledge Discovery and Data Mining (U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
 1995-1998 International Conferences on Knowledge Discovery in Databases
and Data Mining (KDD’95-98)
 Journal of Data Mining and Knowledge Discovery (1997)
 ACM SIGKDD conferences since 1998 and SIGKDD Explorations
 More conferences on data mining
 PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM
(2001), etc.
 ACM Transactions on KDD starting in 2007
37
Conferences and Journals on Data Mining
 KDD Conferences
 ACM SIGKDD Int. Conf. on
Knowledge Discovery in
Databases and Data Mining (KDD)
 SIAM Data Mining Conf. (SDM)
 (IEEE) Int. Conf. on Data Mining
(ICDM)
 European Conf. on Machine
Learning and Principles and
practices of Knowledge Discovery
and Data Mining (ECML-PKDD)
 Pacific-Asia Conf. on Knowledge
Discovery and Data Mining
(PAKDD)
 Int. Conf. on Web Search and
Data Mining (WSDM)
 Other related conferences
 DB conferences: ACM SIGMOD,
VLDB, ICDE, EDBT, ICDT, …
 Web and IR conferences: WWW,
SIGIR, WSDM
 ML conferences: ICML, NIPS
 PR conferences: CVPR,
 Journals
 Data Mining and Knowledge
Discovery (DAMI or DMKD)
 IEEE Trans. On Knowledge and
Data Eng. (TKDE)
 KDD Explorations
 ACM Trans. on KDD
38
Where to Find References? DBLP, CiteSeer, Google
 Data mining and KDD (SIGKDD: CDROM)
 Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
 Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD
 Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)
 Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
 Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.
 AI & Machine Learning
 Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
 Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems,
IEEE-PAMI, etc.
 Web and IR
 Conferences: SIGIR, WWW, CIKM, etc.
 Journals: WWW: Internet and Web Information Systems,
 Statistics
 Conferences: Joint Stat. Meeting, etc.
 Journals: Annals of statistics, etc.
 Visualization
 Conference proceedings: CHI, ACM-SIGGraph, etc.
 Journals: IEEE Trans. visualization and computer graphics, etc.
39
Chapter 1. Introduction
 Why Data Mining?
 What Is Data Mining?
 A Multi-Dimensional View of Data Mining
 What Kind of Data Can Be Mined?
 What Kinds of Patterns Can Be Mined?
 What Technology Are Used?
 What Kind of Applications Are Targeted?
 Major Issues in Data Mining
 A Brief History of Data Mining and Data Mining Society
 Summary
40
Summary
 Data mining: Discovering interesting patterns and knowledge from
massive amount of data
 A natural evolution of database technology, in great demand, with
wide applications
 A KDD process includes data cleaning, data integration, data
selection, transformation, data mining, pattern evaluation, and
knowledge presentation
 Mining can be performed in a variety of data
 Data mining functionalities: characterization, discrimination,
association, classification, clustering, outlier and trend analysis, etc.
 Data mining technologies and applications
 Major issues in data mining
41
Recommended Reference Books
 S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan
Kaufmann, 2002
 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
 T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
 U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and
Data Mining. AAAI/MIT Press, 1996
 U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge
Discovery, Morgan Kaufmann, 2001
 J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
 D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001
 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, 2nd ed., Springer-Verlag, 2009
 B. Liu, Web Data Mining, Springer 2006.
 T. M. Mitchell, Machine Learning, McGraw Hill, 1997
 G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991
 P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
 S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 2nd ed. 2005
Ad

More Related Content

What's hot (20)

Information Networks - (Covered all the Important Topics)
Information Networks - (Covered all the Important Topics) Information Networks - (Covered all the Important Topics)
Information Networks - (Covered all the Important Topics)
Amity University | FMS - DU | IMT | Stratford University | KKMI International Institute | AIMA | DTU
 
Introduction to GPU Programming
Introduction to GPU ProgrammingIntroduction to GPU Programming
Introduction to GPU Programming
Chakkrit (Kla) Tantithamthavorn
 
NoSQL Architecture Overview
NoSQL Architecture OverviewNoSQL Architecture Overview
NoSQL Architecture Overview
Christopher Foot
 
Parallel Algorithms Advantages and Disadvantages
Parallel Algorithms Advantages and DisadvantagesParallel Algorithms Advantages and Disadvantages
Parallel Algorithms Advantages and Disadvantages
Murtadha Alsabbagh
 
System administration with automation
System administration with automationSystem administration with automation
System administration with automation
Shivam Srivastava
 
Hadoop And Their Ecosystem ppt
 Hadoop And Their Ecosystem ppt Hadoop And Their Ecosystem ppt
Hadoop And Their Ecosystem ppt
sunera pathan
 
parallel Questions & answers
parallel Questions & answersparallel Questions & answers
parallel Questions & answers
Md. Mashiur Rahman
 
Lecture6 introduction to data streams
Lecture6 introduction to data streamsLecture6 introduction to data streams
Lecture6 introduction to data streams
hktripathy
 
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Carlos Reaño González
 
Tutorial on Parallel Computing and Message Passing Model - C1
Tutorial on Parallel Computing and Message Passing Model - C1Tutorial on Parallel Computing and Message Passing Model - C1
Tutorial on Parallel Computing and Message Passing Model - C1
Marcirio Chaves
 
architecture of mobile software applications
architecture of mobile software applicationsarchitecture of mobile software applications
architecture of mobile software applications
Hassan Dar
 
Parallel computing and its applications
Parallel computing and its applicationsParallel computing and its applications
Parallel computing and its applications
Burhan Ahmed
 
Data Warehouse
Data WarehouseData Warehouse
Data Warehouse
Samir Sabry
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
Mahesh Bhalerao
 
Optimization Simulated Annealing
Optimization Simulated AnnealingOptimization Simulated Annealing
Optimization Simulated Annealing
Uday Wankar
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
High–Performance Computing
High–Performance ComputingHigh–Performance Computing
High–Performance Computing
BRAC University Computer Club
 
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use casesModel-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Jordi Cabot
 
Data Mining: an Introduction
Data Mining: an IntroductionData Mining: an Introduction
Data Mining: an Introduction
Ali Abbasi
 
Patterns
PatternsPatterns
Patterns
Amith Tiwari
 
NoSQL Architecture Overview
NoSQL Architecture OverviewNoSQL Architecture Overview
NoSQL Architecture Overview
Christopher Foot
 
Parallel Algorithms Advantages and Disadvantages
Parallel Algorithms Advantages and DisadvantagesParallel Algorithms Advantages and Disadvantages
Parallel Algorithms Advantages and Disadvantages
Murtadha Alsabbagh
 
System administration with automation
System administration with automationSystem administration with automation
System administration with automation
Shivam Srivastava
 
Hadoop And Their Ecosystem ppt
 Hadoop And Their Ecosystem ppt Hadoop And Their Ecosystem ppt
Hadoop And Their Ecosystem ppt
sunera pathan
 
parallel Questions & answers
parallel Questions & answersparallel Questions & answers
parallel Questions & answers
Md. Mashiur Rahman
 
Lecture6 introduction to data streams
Lecture6 introduction to data streamsLecture6 introduction to data streams
Lecture6 introduction to data streams
hktripathy
 
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Optimizing Hardware Resource Partitioning and Job Allocations on Modern GPUs ...
Carlos Reaño González
 
Tutorial on Parallel Computing and Message Passing Model - C1
Tutorial on Parallel Computing and Message Passing Model - C1Tutorial on Parallel Computing and Message Passing Model - C1
Tutorial on Parallel Computing and Message Passing Model - C1
Marcirio Chaves
 
architecture of mobile software applications
architecture of mobile software applicationsarchitecture of mobile software applications
architecture of mobile software applications
Hassan Dar
 
Parallel computing and its applications
Parallel computing and its applicationsParallel computing and its applications
Parallel computing and its applications
Burhan Ahmed
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
Mahesh Bhalerao
 
Optimization Simulated Annealing
Optimization Simulated AnnealingOptimization Simulated Annealing
Optimization Simulated Annealing
Uday Wankar
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use casesModel-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Model-driven Software Engineering in practice: Chapter 3 - MDSE Use cases
Jordi Cabot
 
Data Mining: an Introduction
Data Mining: an IntroductionData Mining: an Introduction
Data Mining: an Introduction
Ali Abbasi
 

Similar to 01Introduction to data mining chapter 1.ppt (20)

dataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptxdataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptx
NagendraK18
 
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptxDWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
KVIJAYKUMAR29
 
Chapter 1. Introduction.ppt
Chapter 1. Introduction.pptChapter 1. Introduction.ppt
Chapter 1. Introduction.ppt
Subrata Kumer Paul
 
01Intro.ppt data analytics r language slide 1
01Intro.ppt data analytics r language  slide 101Intro.ppt data analytics r language  slide 1
01Intro.ppt data analytics r language slide 1
MuhammadjunaidgulMuh1
 
Chapter 01Intro.ppt full explanation used
Chapter 01Intro.ppt full explanation usedChapter 01Intro.ppt full explanation used
Chapter 01Intro.ppt full explanation used
my123lapto
 
Introduction of Data Mining - Concept and techniques
Introduction of Data Mining - Concept and techniquesIntroduction of Data Mining - Concept and techniques
Introduction of Data Mining - Concept and techniques
SUMANTWACHASUNDAR1
 
Unit 1 (Chapter-1) on data mining concepts.ppt
Unit 1 (Chapter-1) on data mining concepts.pptUnit 1 (Chapter-1) on data mining concepts.ppt
Unit 1 (Chapter-1) on data mining concepts.ppt
PadmajaLaksh
 
01Intro(1).ppt Introduction In computer science
01Intro(1).ppt Introduction In computer science01Intro(1).ppt Introduction In computer science
01Intro(1).ppt Introduction In computer science
HaiderAli84963
 
Introduction to data warehouse
Introduction to data warehouseIntroduction to data warehouse
Introduction to data warehouse
Cognizant Technology Solutions
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 
Data Mining
Data MiningData Mining
Data Mining
NafiulIslamNakib
 
Cs501 dm intro
Cs501 dm introCs501 dm intro
Cs501 dm intro
Kamal Singh Lodhi
 
01 intro
01 intro01 intro
01 intro
JoonyoungJayGwak
 
Data Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notesData Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notes
asnaparveen414
 
Introduction to Data Mining and technologies .ppt
Introduction to Data Mining and technologies .pptIntroduction to Data Mining and technologies .ppt
Introduction to Data Mining and technologies .ppt
SangrangBargayary3
 
introduction to data minining and unit iii
introduction to data minining  and unit iiiintroduction to data minining  and unit iii
introduction to data minining and unit iii
GayathriRHICETCSESTA
 
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
stuti8985
 
big data and data warehouse unit 1 for college
big data and data warehouse unit 1 for collegebig data and data warehouse unit 1 for college
big data and data warehouse unit 1 for college
CHOLMALUAL
 
Introduction.ppt
Introduction.pptIntroduction.ppt
Introduction.ppt
bommaiah
 
Introduction
IntroductionIntroduction
Introduction
neelamoberoi1030
 
dataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptxdataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptx
NagendraK18
 
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptxDWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
KVIJAYKUMAR29
 
01Intro.ppt data analytics r language slide 1
01Intro.ppt data analytics r language  slide 101Intro.ppt data analytics r language  slide 1
01Intro.ppt data analytics r language slide 1
MuhammadjunaidgulMuh1
 
Chapter 01Intro.ppt full explanation used
Chapter 01Intro.ppt full explanation usedChapter 01Intro.ppt full explanation used
Chapter 01Intro.ppt full explanation used
my123lapto
 
Introduction of Data Mining - Concept and techniques
Introduction of Data Mining - Concept and techniquesIntroduction of Data Mining - Concept and techniques
Introduction of Data Mining - Concept and techniques
SUMANTWACHASUNDAR1
 
Unit 1 (Chapter-1) on data mining concepts.ppt
Unit 1 (Chapter-1) on data mining concepts.pptUnit 1 (Chapter-1) on data mining concepts.ppt
Unit 1 (Chapter-1) on data mining concepts.ppt
PadmajaLaksh
 
01Intro(1).ppt Introduction In computer science
01Intro(1).ppt Introduction In computer science01Intro(1).ppt Introduction In computer science
01Intro(1).ppt Introduction In computer science
HaiderAli84963
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 
Data Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notesData Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notes
asnaparveen414
 
Introduction to Data Mining and technologies .ppt
Introduction to Data Mining and technologies .pptIntroduction to Data Mining and technologies .ppt
Introduction to Data Mining and technologies .ppt
SangrangBargayary3
 
introduction to data minining and unit iii
introduction to data minining  and unit iiiintroduction to data minining  and unit iii
introduction to data minining and unit iii
GayathriRHICETCSESTA
 
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
Chap1-Introduction.pptx. Data Mining and introduction about it in a specified...
stuti8985
 
big data and data warehouse unit 1 for college
big data and data warehouse unit 1 for collegebig data and data warehouse unit 1 for college
big data and data warehouse unit 1 for college
CHOLMALUAL
 
Introduction.ppt
Introduction.pptIntroduction.ppt
Introduction.ppt
bommaiah
 
Ad

Recently uploaded (20)

Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFAMEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
Dr. Nasir Mustafa
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Origin of Brahmi script: A breaking down of various theories
Origin of Brahmi script: A breaking down of various theoriesOrigin of Brahmi script: A breaking down of various theories
Origin of Brahmi script: A breaking down of various theories
PrachiSontakke5
 
Lecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptxLecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptx
Arshad Shaikh
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptxTERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
PoojaSen20
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
The History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptxThe History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
Computer crime and Legal issues Computer crime and Legal issues
Computer crime and Legal issues Computer crime and Legal issuesComputer crime and Legal issues Computer crime and Legal issues
Computer crime and Legal issues Computer crime and Legal issues
Abhijit Bodhe
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFAMEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
Dr. Nasir Mustafa
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Origin of Brahmi script: A breaking down of various theories
Origin of Brahmi script: A breaking down of various theoriesOrigin of Brahmi script: A breaking down of various theories
Origin of Brahmi script: A breaking down of various theories
PrachiSontakke5
 
Lecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptxLecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptx
Arshad Shaikh
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptxTERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
PoojaSen20
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
Computer crime and Legal issues Computer crime and Legal issues
Computer crime and Legal issues Computer crime and Legal issuesComputer crime and Legal issues Computer crime and Legal issues
Computer crime and Legal issues Computer crime and Legal issues
Abhijit Bodhe
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Ad

01Introduction to data mining chapter 1.ppt

  • 1. 1 1 Data Mining: Concepts and Techniques (3rd ed.) — Chapter 1 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.
  • 2. 2 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 3. 3 Why Data Mining?  The Explosive Growth of Data: from terabytes to petabytes  Data collection and data availability  Automated data collection tools, database systems, Web, computerized society  Major sources of abundant data  Business: Web, e-commerce, transactions, stocks, …  Science: Remote sensing, bioinformatics, scientific simulation, …  Society and everyone: news, digital cameras, YouTube  We are drowning in data, but starving for knowledge!  “Necessity is the mother of invention”—Data mining—Automated analysis of massive data sets
  • 4. 4 Evolution of Sciences  Before 1600, empirical science  1600-1950s, theoretical science  Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding.  1950s-1990s, computational science  Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)  Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.  1990-now, data science  The flood of data from new scientific instruments and simulations  The ability to economically store and manage petabytes of data online  The Internet and computing Grid that makes all these archives universally accessible  Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!  Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science, Comm. ACM, 45(11): 50-54, Nov. 2002
  • 5. 5 Evolution of Database Technology  1960s:  Data collection, database creation, IMS and network DBMS  1970s:  Relational data model, relational DBMS implementation  1980s:  RDBMS, advanced data models (extended-relational, OO, deductive, etc.)  Application-oriented DBMS (spatial, scientific, engineering, etc.)  1990s:  Data mining, data warehousing, multimedia databases, and Web databases  2000s  Stream data management and mining  Data mining and its applications  Web technology (XML, data integration) and global information systems
  • 6. 6 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 7. 7 What Is Data Mining?  Data mining (knowledge discovery from data)  Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data  Data mining: a misnomer?  Alternative names  Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.  Watch out: Is everything “data mining”?  Simple search and query processing  (Deductive) expert systems
  • 8. 8 Knowledge Discovery (KDD) Process  This is a view from typical database systems and data warehousing communities  Data mining plays an essential role in the knowledge discovery process Data Cleaning Data Integration Databases Data Warehouse Task-relevant Data Selection Data Mining Pattern Evaluation
  • 9. 9 Example: A Web Mining Framework  Web mining usually involves  Data cleaning  Data integration from multiple sources  Warehousing the data  Data cube construction  Data selection for data mining  Data mining  Presentation of the mining results  Patterns and knowledge to be used or stored into knowledge-base
  • 10. 10 Data Mining in Business Intelligence Increasing potential to support business decisions End User Business Analyst Data Analyst DBA Decision Making Data Presentation Visualization Techniques Data Mining Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems
  • 11. 11 Example: Mining vs. Data Exploration  Business intelligence view  Warehouse, data cube, reporting but not much mining  Business objects vs. data mining tools  Supply chain example: tools  Data presentation  Exploration
  • 12. 12 KDD Process: A Typical View from ML and Statistics Input Data Data Mining Data Pre- Processing Post- Processing  This is a view from typical machine learning and statistics communities Data integration Normalization Feature selection Dimension reduction Pattern discovery Association & correlation Classification Clustering Outlier analysis … … … … Pattern evaluation Pattern selection Pattern interpretation Pattern visualization
  • 13. 13 Example: Medical Data Mining  Health care & medical data mining – often adopted such a view in statistics and machine learning  Preprocessing of the data (including feature extraction and dimension reduction)  Classification or/and clustering processes  Post-processing for presentation
  • 14. 14 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 15. 15 Multi-Dimensional View of Data Mining  Data to be mined  Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks  Knowledge to be mined (or: Data mining functions)  Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.  Descriptive vs. predictive data mining  Multiple/integrated functions and mining at multiple levels  Techniques utilized  Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.  Applications adapted  Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.
  • 16. 16 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 17. 17 Data Mining: On What Kinds of Data?  Database-oriented data sets and applications  Relational database, data warehouse, transactional database  Advanced data sets and advanced applications  Data streams and sensor data  Time-series data, temporal data, sequence data (incl. bio-sequences)  Structure data, graphs, social networks and multi-linked data  Object-relational databases  Heterogeneous databases and legacy databases  Spatial data and spatiotemporal data  Multimedia database  Text databases  The World-Wide Web
  • 18. 18 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 19. 19 Data Mining Function: (1) Generalization  Information integration and data warehouse construction  Data cleaning, transformation, integration, and multidimensional data model  Data cube technology  Scalable methods for computing (i.e., materializing) multidimensional aggregates  OLAP (online analytical processing)  Multidimensional concept description: Characterization and discrimination  Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region
  • 20. 20 Data Mining Function: (2) Association and Correlation Analysis  Frequent patterns (or frequent itemsets)  What items are frequently purchased together in your Walmart?  Association, correlation vs. causality  A typical association rule  Diaper  Beer [0.5%, 75%] (support, confidence)  Are strongly associated items also strongly correlated?  How to mine such patterns and rules efficiently in large datasets?  How to use such patterns for classification, clustering, and other applications?
  • 21. 21 Data Mining Function: (3) Classification  Classification and label prediction  Construct models (functions) based on some training examples  Describe and distinguish classes or concepts for future prediction  E.g., classify countries based on (climate), or classify cars based on (gas mileage)  Predict some unknown class labels  Typical methods  Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern- based classification, logistic regression, …  Typical applications:  Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, …
  • 22. 22 Data Mining Function: (4) Cluster Analysis  Unsupervised learning (i.e., Class label is unknown)  Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns  Principle: Maximizing intra-class similarity & minimizing interclass similarity  Many methods and applications
  • 23. 23 Data Mining Function: (5) Outlier Analysis  Outlier analysis  Outlier: A data object that does not comply with the general behavior of the data  Noise or exception? ― One person’s garbage could be another person’s treasure  Methods: by product of clustering or regression analysis, …  Useful in fraud detection, rare events analysis
  • 24. 24 Time and Ordering: Sequential Pattern, Trend and Evolution Analysis  Sequence, trend and evolution analysis  Trend, time-series, and deviation analysis: e.g., regression and value prediction  Sequential pattern mining  e.g., first buy digital camera, then buy large SD memory cards  Periodicity analysis  Motifs and biological sequence analysis  Approximate and consecutive motifs  Similarity-based analysis  Mining data streams  Ordered, time-varying, potentially infinite, data streams
  • 25. 25 Structure and Network Analysis  Graph mining  Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)  Information network analysis  Social networks: actors (objects, nodes) and relationships (edges)  e.g., author networks in CS, terrorist networks  Multiple heterogeneous networks  A person could be multiple information networks: friends, family, classmates, …  Links carry a lot of semantic information: Link mining  Web mining  Web is a big information network: from PageRank to Google  Analysis of Web information networks  Web community discovery, opinion mining, usage mining, …
  • 26. 26 Evaluation of Knowledge  Are all mined knowledge interesting?  One can mine tremendous amount of “patterns” and knowledge  Some may fit only certain dimension space (time, location, …)  Some may not be representative, may be transient, …  Evaluation of mined knowledge → directly mine only interesting knowledge?  Descriptive vs. predictive  Coverage  Typicality vs. novelty  Accuracy  Timeliness  …
  • 27. 27 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 28. 28 Data Mining: Confluence of Multiple Disciplines Data Mining Machine Learning Statistics Applications Algorithm Pattern Recognition High-Performance Computing Visualization Database Technology
  • 29. 29 Why Confluence of Multiple Disciplines?  Tremendous amount of data  Algorithms must be highly scalable to handle such as tera-bytes of data  High-dimensionality of data  Micro-array may have tens of thousands of dimensions  High complexity of data  Data streams and sensor data  Time-series data, temporal data, sequence data  Structure data, graphs, social networks and multi-linked data  Heterogeneous databases and legacy databases  Spatial, spatiotemporal, multimedia, text and Web data  Software programs, scientific simulations  New and sophisticated applications
  • 30. 30 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 31. 31 Applications of Data Mining  Web page analysis: from web page classification, clustering to PageRank & HITS algorithms  Collaborative analysis & recommender systems  Basket data analysis to targeted marketing  Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis  Data mining and software engineering (e.g., IEEE Computer, Aug. 2009 issue)  From major dedicated data mining systems/tools (e.g., SAS, MS SQL- Server Analysis Manager, Oracle Data Mining Tools) to invisible data mining
  • 32. 32 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 33. 33 Major Issues in Data Mining (1)  Mining Methodology  Mining various and new kinds of knowledge  Mining knowledge in multi-dimensional space  Data mining: An interdisciplinary effort  Boosting the power of discovery in a networked environment  Handling noise, uncertainty, and incompleteness of data  Pattern evaluation and pattern- or constraint-guided mining  User Interaction  Interactive mining  Incorporation of background knowledge  Presentation and visualization of data mining results
  • 34. 34 Major Issues in Data Mining (2)  Efficiency and Scalability  Efficiency and scalability of data mining algorithms  Parallel, distributed, stream, and incremental mining methods  Diversity of data types  Handling complex types of data  Mining dynamic, networked, and global data repositories  Data mining and society  Social impacts of data mining  Privacy-preserving data mining  Invisible data mining
  • 35. 35 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 36. 36 A Brief History of Data Mining Society  1989 IJCAI Workshop on Knowledge Discovery in Databases  Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)  1991-1994 Workshops on Knowledge Discovery in Databases  Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)  1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)  Journal of Data Mining and Knowledge Discovery (1997)  ACM SIGKDD conferences since 1998 and SIGKDD Explorations  More conferences on data mining  PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.  ACM Transactions on KDD starting in 2007
  • 37. 37 Conferences and Journals on Data Mining  KDD Conferences  ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)  SIAM Data Mining Conf. (SDM)  (IEEE) Int. Conf. on Data Mining (ICDM)  European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)  Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)  Int. Conf. on Web Search and Data Mining (WSDM)  Other related conferences  DB conferences: ACM SIGMOD, VLDB, ICDE, EDBT, ICDT, …  Web and IR conferences: WWW, SIGIR, WSDM  ML conferences: ICML, NIPS  PR conferences: CVPR,  Journals  Data Mining and Knowledge Discovery (DAMI or DMKD)  IEEE Trans. On Knowledge and Data Eng. (TKDE)  KDD Explorations  ACM Trans. on KDD
  • 38. 38 Where to Find References? DBLP, CiteSeer, Google  Data mining and KDD (SIGKDD: CDROM)  Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.  Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD  Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)  Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA  Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.  AI & Machine Learning  Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.  Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.  Web and IR  Conferences: SIGIR, WWW, CIKM, etc.  Journals: WWW: Internet and Web Information Systems,  Statistics  Conferences: Joint Stat. Meeting, etc.  Journals: Annals of statistics, etc.  Visualization  Conference proceedings: CHI, ACM-SIGGraph, etc.  Journals: IEEE Trans. visualization and computer graphics, etc.
  • 39. 39 Chapter 1. Introduction  Why Data Mining?  What Is Data Mining?  A Multi-Dimensional View of Data Mining  What Kind of Data Can Be Mined?  What Kinds of Patterns Can Be Mined?  What Technology Are Used?  What Kind of Applications Are Targeted?  Major Issues in Data Mining  A Brief History of Data Mining and Data Mining Society  Summary
  • 40. 40 Summary  Data mining: Discovering interesting patterns and knowledge from massive amount of data  A natural evolution of database technology, in great demand, with wide applications  A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation  Mining can be performed in a variety of data  Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.  Data mining technologies and applications  Major issues in data mining
  • 41. 41 Recommended Reference Books  S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan Kaufmann, 2002  R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000  T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003  U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996  U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001  J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011  D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001  T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer-Verlag, 2009  B. Liu, Web Data Mining, Springer 2006.  T. M. Mitchell, Machine Learning, McGraw Hill, 1997  G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991  P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005  S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998  I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005