SlideShare a Scribd company logo
• Introduction to
Assembly Language
Presentation Outline
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
Constants
• Integer Constants
• Examples: –10, 42d, 10001101b, 0FF3Ah, 777o
• Radix: b = binary, d = decimal, h = hexadecimal, and o = octal
• If no radix is given, the integer constant is decimal
• A hexadecimal beginning with a letter must have a leading 0
• Character and String Constants
• Enclose character or string in single or double quotes
• Examples: 'A', "d", 'ABC', "ABC", '4096'
• Embedded quotes: "single quote ' inside", 'double quote " inside'
• Each ASCII character occupies a single byte
Assembly Language Statements
• Three types of statements in assembly language
• Typically, one statement should appear on a line
1. Executable Instructions
• Generate machine code for the processor to execute at runtime
• Instructions tell the processor what to do
2. Assembler Directives
• Provide information to the assembler while translating a program
• Used to define data, select memory model, etc.
• Non-executable: directives are not part of instruction set
3. Macros
• Shorthand notation for a group of statements
• Sequence of instructions, directives, or other macros
Instructions
• Assembly language instructions have the format:
[label:] mnemonic [operands] [;comment]
• Instruction Label (optional)
• Marks the address of an instruction, must have a colon :
• Used to transfer program execution to a labeled instruction
• Mnemonic
• Identifies the operation (e.g. MOV, ADD, SUB, JMP, CALL)
• Operands
• Specify the data required by the operation
• Executable instructions can have zero to three operands
• Operands can be registers, memory variables, or constants
• No operands
stc ; set carry flag
• One operand
inc eax ; increment register eax
call Clrscr ; call procedure Clrscr
jmp L1 ; jump to instruction with label L1
• Two operands
add ebx, ecx ; register ebx = ebx + ecx
sub var1, 25; memory variable var1 = var1 - 25
• Three operands
imul eax,ebx,5 ; register eax = ebx * 5
Instruction Examples
Comments
• Comments are very important!
• Explain the program's purpose
• When it was written, revised, and by whom
• Explain data used in the program
• Explain instruction sequences and algorithms used
• Application-specific explanations
• Single-line comments
• Begin with a semicolon ; and terminate at end of line
• Multi-line comments
• Begin with COMMENT directive and a chosen character
• End with the same chosen character
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
Flat Memory Program Template
TITLE Flat Memory Program Template (Template.asm)
; Program Description:
; Author: Creation Date:
; Modified by: Modification Date:
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
; (insert variables here)
.CODE
main PROC
; (insert executable instructions here)
exit
main ENDP
; (insert additional procedures here)
END main
TITLE and .MODEL Directives
• TITLE line (optional)
• Contains a brief heading of the program and the disk file name
• .MODEL directive
• Specifies the memory configuration
• For our purposes, the FLAT memory model will be used
• Linear 32-bit address space (no segmentation)
• STDCALL directive tells the assembler to use …
• Standard conventions for names and procedure calls
• .686 processor directive
• Used before the .MODEL directive
• Program can use instructions of Pentium P6 architecture
• At least the .386 directive should be used with the FLAT model
.STACK, .DATA, & .CODE Directives
• .STACK directive
• Tells the assembler to define a runtime stack for the program
• The size of the stack can be optionally specified by this directive
• The runtime stack is required for procedure calls
• .DATA directive
• Defines an area in memory for the program data
• The program's variables should be defined under this directive
• Assembler will allocate and initialize the storage of variables
• .CODE directive
• Defines the code section of a program containing instructions
• Assembler will place the instructions in the code area in memory
INCLUDE, PROC, ENDP, and END
• INCLUDE directive
• Causes the assembler to include code from another file
• We will include Irvine32.inc provided by the author Kip Irvine
• Declares procedures implemented in the Irvine32.lib library
• To use this library, you should link Irvine32.lib to your programs
• PROC and ENDP directives
• Used to define procedures
• As a convention, we will define main as the first procedure
• Additional procedures can be defined after main
• END directive
• Marks the end of a program
• Identifies the name (main) of the program’s startup procedure
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.CODE
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers
exit
main ENDP
END main
Adding and Subtracting Integers
Example of Console Output
Procedure DumpRegs is defined in Irvine32.lib library
It produces the following console output,
showing registers and flags:
EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF
ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0
Suggested Coding Standards
• Some approaches to capitalization
• Capitalize nothing
• Capitalize everything
• Capitalize all reserved words, mnemonics and register names
• Capitalize only directives and operators
• MASM is NOT case sensitive: does not matter what case is used
• Other suggestions
• Use meaningful identifier names
• Use blank lines between procedures
• Use indentation and spacing to align instructions and comments
• Use tabs to indent instructions, but do not indent labels
• Align the comments that appear after the instructions
Understanding Program Termination
• The exit at the end of main procedure is a macro
• Defined in Irvine32.inc
• Expanded into a call to ExitProcess that terminates the program
• ExitProcess function is defined in the kernel32 library
• We can replace exit with the following:
push 0 ; push parameter 0 on stack
call ExitProcess ; to terminate program
• You can also replace exit with: INVOKE ExitProcess, 0
• PROTO directive (Prototypes)
• Declares a procedure used by a program and defined elsewhere
ExitProcess PROTO, ExitCode:DWORD
• Specifies the parameters and types of a given procedure
Modified Program
TITLE Add and Subtract (AddSubAlt.asm)
; This program adds and subtracts 32-bit integers
.686
.MODEL flat,stdcall
.STACK 4096
; No need to include Irvine32.inc
ExitProcess PROTO, dwExitCode:DWORD
.code
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
push 0
call ExitProcess ; to terminate program
main ENDP
END main
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
Assemble-Link-Debug Cycle
• Editor
• Write new (.asm) programs
• Make changes to existing ones
• Assembler: ML.exe program
• Translate (.asm) file into object
(.obj) file in machine language
• Can produce a listing (.lst) file
that shows the work of assembler
• Linker: LINK32.exe program
• Combine object (.obj) files with
link library (.lib) files
• Produce executable (.exe) file
• Can produce optional (.map) file
Edit
Assemble
Link
Run
prog.asm
prog.obj prog.lst
prog.exe prog.map
library.lib
Debug
Assemble-Link-Debug Cycle – cont'd
• MAKE32.bat
• Batch command file
• Assemble and link in one step
• Debugger: WINDBG.exe
• Trace program execution
• Either step-by-step, or
• Use breakpoints
• View
• Source (.asm) code
• Registers
• Memory by name & by address
• Modify register & memory content
• Discover errors and go back to the editor to fix the program bugs
Edit
Assemble
Link
Run
prog.asm
prog.obj prog.lst
prog.exe prog.map
library.lib
Debug
Listing File
• Use it to see how your program is assembled
• Contains
• Source code
• Object code
• Relative addresses
• Segment names
• Symbols
• Variables
• Procedures
• Constants
Object & source code in a listing file
00000000 .code
00000000 main PROC
00000000 B8 00060000 mov eax,
60000h
00000005 05 00080000 add eax,
80000h
0000000A 2D 00020000 sub eax,
20000h
0000000F 6A 00 push 0
00000011 E8 00000000 E call
ExitProcess
00000016 main ENDP
END main
object code
(hexadecimal)
source code
Relative
Addresses
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
• BYTE, SBYTE
• 8-bit unsigned integer
• 8-bit signed integer
• WORD, SWORD
• 16-bit unsigned integer
• 16-bit signed integer
• DWORD, SDWORD
• 32-bit unsigned integer
• 32-bit signed integer
• QWORD, TBYTE
• 64-bit integer
• 80-bit integer
❖ REAL4
✧ IEEE single-precision float
✧ Occupies 4 bytes
❖ REAL8
✧ IEEE double-precision
✧ Occupies 8 bytes
❖ REAL10
✧ IEEE extended-precision
✧ Occupies 10 bytes
Intrinsic Data Types
Data Definition Statement
• Sets aside storage in memory for a variable
• May optionally assign a name (label) to the data
• Syntax:
[name] directive initializer [, initializer] . . .
val1 BYTE 10
• All initializers become binary data in memory
Defining BYTE and SBYTE Data
value1 BYTE 'A' ; character constant
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
value4 SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte
value6 BYTE ? ; uninitialized byte
Each of the following defines a single byte of storage:
• MASM does not prevent you from initializing a BYTE with a
negative value, but it's considered poor style.
• If you declare a SBYTE variable, the Microsoft debugger will
automatically display its value in decimal with a leading sign.
Defining Byte Arrays
list1 BYTE 10,20,30,40
list2 BYTE 10,20,30,40
BYTE 50,60,70,80
BYTE 81,82,83,84
list3 BYTE ?,32,41h,00100010b
list4 BYTE 0Ah,20h,'A',22h
Examples that use multiple initializers
Defining Strings
• A string is implemented as an array of characters
• For convenience, it is usually enclosed in quotation marks
• It is often terminated with a NULL char (byte value = 0)
• Examples:
str1 BYTE "Enter your name", 0
str2 BYTE 'Error: halting program', 0
str3 BYTE 'A','E','I','O','U'
greeting BYTE "Welcome to the Encryption "
BYTE "Demo Program", 0
Defining Strings – cont'd
• To continue a single string across multiple
lines, end each line with a comma
menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
"1. Create a new account",0dh,0ah,
"2. Open an existing account",0dh,0ah,
"3. Credit the account",0dh,0ah,
"4. Debit the account",0dh,0ah,
"5. Exit",0ah,0ah,
"Choice> ",0
❖ End-of-line character
sequence:
✧ 0Dh = 13 = carriage return
✧ 0Ah = 10 = line feed
Idea: Define all strings
used by your program in
the same area of the
data segment
Using the DUP Operator
• Use DUP to allocate space for an array or string
• Advantage: more compact than using a list of
initializers
• Syntax
counter DUP ( argument )
Counter and argument must be constants expressions
• The DUP operator may also be nested
var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero
var2 BYTE 20 DUP(?) ; 20 bytes, all uninitialized
var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"
var4 BYTE 10,3 DUP(0),20 ; 5 bytes: 10, 0, 0, 0, 20
var5 BYTE 2 DUP(5 DUP('*'), 5 DUP('!')) ; '*****!!!!!*****!!!!!'
Defining 16-bit and 32-bit Data
• Define storage for 16-bit and 32-bit integers
• Signed and Unsigned
• Single or multiple initial values
word1 WORD 65535 ; largest unsigned 16-bit
value
word2 SWORD –32768 ; smallest signed 16-bit
value
word3 WORD "AB" ; two characters fit in a WORD
array1 WORD 1,2,3,4,5 ; array of 5 unsigned words
array2 SWORD 5 DUP(?) ; array of 5 signed words
dword1 DWORD 0ffffffffh ; largest unsigned 32-bit
value
dword2 SDWORD –2147483648 ; smallest signed 32-bit value
array3 DWORD 20 DUP(?) ; 20 unsigned double words
array4 SDWORD –3,–2,–1,0,1 ; 5 signed double words
QWORD, TBYTE, and REAL Data
quad1 QWORD 1234567812345678h
val1 TBYTE 1000000000123456789Ah
rVal1 REAL4 -2.1
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
array REAL4 20 DUP(0.0)
❖ QWORD and TBYTE
✧ Define storage for 64-bit and 80-bit integers
✧ Signed and Unsigned
❖ REAL4, REAL8, and REAL10
✧ Defining storage for 32-bit, 64-bit, and 80-bit floating-
point data
• Assembler builds a symbol table
• So we can refer to the allocated storage space by name
• Assembler keeps track of each name and its offset
• Offset of a variable is relative to the address of the
first variable
• Example Symbol Table
.DATA Name Offset
value WORD 0 value 0
sum DWORD 0 sum 2
marks WORD 10 DUP (?) marks 6
msg BYTE 'The grade is:',0msg 26
char1 BYTE ? char1 40
Symbol Table
• Processors can order bytes within a word in two ways
• Little Endian Byte Ordering
• Memory address = Address of least significant byte
• Examples: Intel 80x86
• Big Endian Byte Ordering
• Memory address = Address of most significant byte
• Examples: MIPS, Motorola 68k, SPARC
Byte Ordering and Endianness
Byte 0
Byte 1
Byte 2
Byte 3
32-bit Register
MSB LSB
. . . . . .
Byte 0
Byte 1
Byte 2
Byte 3
a a+3
a+2
a+1
Memory
address
Byte 3
Byte 0
Byte 1
Byte 2
Byte 3
32-bit Register
MSB LSB
. . . . . .
Byte 0 Byte 1 Byte 2
a a+3
a+2
a+1
Memory
address
Adding Variables to AddSub
TITLE Add and Subtract, Version 2 (AddSub2.asm)
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
result DWORD ?
.CODE
main PROC
mov eax,val1 ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov result,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit
main ENDP
END main
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
Defining Symbolic Constants
• Symbolic Constant
• Just a name used in the assembly language program
• Processed by the assembler pure text substitution
⇒
• Assembler does NOT allocate memory for symbolic constants
• Assembler provides three directives:
• = directive
• EQU directive
• TEXTEQU directive
• Defining constants has two advantages:
• Improves program readability
• Helps in software maintenance: changes are done in one place
Equal-Sign Directive
• Name = Expression
• Name is called a symbolic constant
• Expression is an integer constant expression
• Good programming style to use symbols
• Name can be redefined in the program
COUNT = 500 ; NOT a variable (NO memory allocation)
. . .
mov eax, COUNT ; mov eax, 500
. . .
COUNT = 600 ; Processed by the assembler
. . .
mov ebx, COUNT ; mov ebx, 600
• Three Formats:
Name EQU Expression Integer constant expression
Name EQU Symbol Existing symbol name
Name EQU <text> Any text may appear within < …>
• No Redefinition: Name cannot be redefined
with EQU
EQU Directive
SIZE EQU 10*10 ; Integer constant expression
PI EQU <3.1416> ; Real symbolic constant
PressKey EQU <"Press any key to continue...",0>
.DATA
prompt BYTE PressKey
TEXTEQU Directive
• TEXTEQU creates a text macro. Three Formats:
Name TEXTEQU <text> assign any text to name
Name TEXTEQU textmacro assign existing text macro
Name TEXTEQU %constExpr constant integer expression
• Name can be redefined at any time (unlike EQU)
ROWSIZE = 5
COUNT TEXTEQU %(ROWSIZE * 2) ; evaluates to 10
MOVAL TEXTEQU <mov al,COUNT>
ContMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.DATA
prompt BYTE ContMsg
.CODE
MOVAL ; generates: mov al,10
Next . . .
• Basic Elements of Assembly Language
• Flat Memory Program Template
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Debugging Programs
• Defining Data
• Defining Symbolic Constants
• Data-Related Operators and Directives
OFFSET Operator
.DATA
bVal BYTE ? ; Assume bVal is at 00404000h
wVal WORD ?
dVal DWORD ?
dVal2 DWORD ?
.CODE
mov esi, OFFSET bVal ; ESI = 00404000h
mov esi, OFFSET wVal ; ESI = 00404001h
mov esi, OFFSET dVal ; ESI = 00404003h
mov esi, OFFSET dVal2 ; ESI = 00404007h
❖ OFFSET = address of a variable within its segment
✧ In FLAT memory, one address space is used for code and data
✧ OFFSET = linear address of a variable (32-bit number)
ALIGN Directive
• ALIGN directive aligns a variable in memory
• Syntax: ALIGN bound
• Where bound can be 1, 2, 4, or 16
• Address of a variable should be a multiple of bound
• Assembler inserts empty bytes to enforce alignment
.DATA ; Assume that
b1 BYTE ? ; Address of b1 =
00404000h
ALIGN 2 ; Skip one byte
w1 WORD ? ; Address of w1 =
00404002h
w2 WORD ? ; Address of w2 =
00404004h
ALIGN 4 ; Skip two bytes
d1 DWORD ? ; Address of d1 =
00404008h
d2 DWORD ? ; Address of d2 =
0040400Ch
w1
b1
404000
w2
404004
d1
404008
d2
40400C
TYPE Operator
• TYPE operator
• Size, in bytes, of a single element of a data
declaration
.DATA
var1 BYTE ?
var2 WORD ?
var3 DWORD ?
var4 QWORD ?
.CODE
mov eax, TYPE var1 ; eax = 1
mov eax, TYPE var2 ; eax = 2
mov eax, TYPE var3 ; eax = 4
mov eax, TYPE var4 ; eax = 8
❖ LENGTHOF operator
✧ Counts the number of elements in a single data declaration
LENGTHOF Operator
.DATA
array1 WORD 30 DUP(?),0,0
array2 WORD 5 DUP(3 DUP(?))
array3 DWORD 1,2,3,4
digitStr BYTE "12345678",0
.code
mov ecx, LENGTHOF array1 ; ecx = 32
mov ecx, LENGTHOF array2 ; ecx = 15
mov ecx, LENGTHOF array3 ; ecx = 4
mov ecx, LENGTHOF digitStr ; ecx = 9
SIZEOF Operator
.DATA
array1 WORD 30 DUP(?),0,0
array2 WORD 5 DUP(3 DUP(?))
array3 DWORD 1,2,3,4
digitStr BYTE "12345678",0
.CODE
mov ecx, SIZEOF array1 ; ecx = 64
mov ecx, SIZEOF array2 ; ecx = 30
mov ecx, SIZEOF array3 ; ecx = 16
mov ecx, SIZEOF digitStr ; ecx = 9
❖ SIZEOF operator
✧ Counts the number of bytes in a data declaration
✧ Equivalent to multiplying LENGTHOF by TYPE
Multiple Line Declarations
.DATA
array WORD 10,20,
30,40,
50,60
.CODE
mov eax, LENGTHOF array ; 6
mov ebx, SIZEOF array ; 12
A data declaration spans
multiple lines if each line
(except the last) ends with a
comma
The LENGTHOF and SIZEOF
operators include all lines
belonging to the declaration
.DATA
array WORD 10,20
WORD 30,40
WORD 50,60
.CODE
mov eax, LENGTHOF array ; 2
mov ebx, SIZEOF array ; 4
In the following example, array
identifies the first line WORD
declaration only
Compare the values returned by
LENGTHOF and SIZEOF here
to those on the left
❖ PTR Provides the flexibility to access part of a variable
❖ Can also be used to combine elements of a smaller type
❖ Syntax: Type PTR (Overrides default type of a variable)
PTR Operator
.DATA
dval DWORD 12345678h
array BYTE 00h,10h,20h,30h
.CODE
mov al, dval
mov al, BYTE PTR dval
mov ax, dval
mov ax, WORD PTR dval
mov eax, array
mov eax, DWORD PTR array
78 56 34 12
dval
00 10 20 30
array
; error – why?
; al = 78h
; error – why?
; ax = 5678h
; error – why?
; eax = 30201000h
LABEL Directive
• Assigns an alternate name and type to a memory location
• LABEL does not allocate any storage of its own
• Removes the need for the PTR operator
• Format: Name LABEL Type
.DATA
dval LABEL DWORD
wval LABEL WORD
blist BYTE 00h,10h,00h,20h
.CODE
mov eax, dval
mov cx, wval
mov dl, blist
wval
00 10 00 20
blist
dval
; eax = 20001000h
; cx = 1000h
; dl = 00h
•mov Test, next week
Summary
• Instruction executed at runtime
⇒
• Directive interpreted by the assembler
⇒
• .STACK, .DATA, and .CODE
• Define the code, data, and stack sections of a program
• Edit-Assemble-Link-Debug Cycle
• Data Definition
• BYTE, WORD, DWORD, QWORD, etc.
• DUP operator
• Symbolic Constant
• =, EQU, and TEXTEQU directives
• Data-Related Operators
• OFFSET, ALIGN, TYPE, LENGTHOF, SIZEOF, PTR, and LABEL

More Related Content

Similar to 03-IntroAssembly.pptx Introduction to assmebly language (20)

Assembly Components and other tolls like
Assembly Components and other tolls likeAssembly Components and other tolls like
Assembly Components and other tolls like
AssadLeo1
 
EC8691-MPMC-PPT.pptx
EC8691-MPMC-PPT.pptxEC8691-MPMC-PPT.pptx
EC8691-MPMC-PPT.pptx
Manikandan813397
 
Alp 05
Alp 05Alp 05
Alp 05
Jaimon Jacob
 
Assembler directives and basic steps ALP of 8086
Assembler directives and basic steps ALP of 8086Assembler directives and basic steps ALP of 8086
Assembler directives and basic steps ALP of 8086
Urvashi Singh
 
It322 intro 3
It322 intro 3It322 intro 3
It322 intro 3
J Cza Àkera
 
Part III: Assembly Language
Part III: Assembly LanguagePart III: Assembly Language
Part III: Assembly Language
Ahmed M. Abed
 
Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086
Shehrevar Davierwala
 
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfddchap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
YumnaShahzaad
 
Alp 05
Alp 05Alp 05
Alp 05
gswapnil86
 
Alp 05
Alp 05Alp 05
Alp 05
Murali Krishna
 
chapt_5+6AssemblyLanguagecompleteclear.ppt
chapt_5+6AssemblyLanguagecompleteclear.pptchapt_5+6AssemblyLanguagecompleteclear.ppt
chapt_5+6AssemblyLanguagecompleteclear.ppt
mubashrabashir540
 
Assem -lect-6
Assem -lect-6Assem -lect-6
Assem -lect-6
Dolly Angel
 
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
Amit Kumer Podder
 
Part II: Assembly Fundamentals
Part II: Assembly FundamentalsPart II: Assembly Fundamentals
Part II: Assembly Fundamentals
Ahmed M. Abed
 
Stack and subroutine
Stack and subroutineStack and subroutine
Stack and subroutine
Ashim Saha
 
Lec06
Lec06Lec06
Lec06
siddu kadiwal
 
assembler Directives hnotesnnnnnnnn.pptx
assembler Directives hnotesnnnnnnnn.pptxassembler Directives hnotesnnnnnnnn.pptx
assembler Directives hnotesnnnnnnnn.pptx
Drkoteswararaoseelam
 
8051h.ppt microcontroller Assembly Language Programming
8051h.ppt microcontroller Assembly Language Programming8051h.ppt microcontroller Assembly Language Programming
8051h.ppt microcontroller Assembly Language Programming
anushkayadav3011
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Bilal Amjad
 
Assembly Language Programming
Assembly Language ProgrammingAssembly Language Programming
Assembly Language Programming
Niropam Das
 
Assembly Components and other tolls like
Assembly Components and other tolls likeAssembly Components and other tolls like
Assembly Components and other tolls like
AssadLeo1
 
Assembler directives and basic steps ALP of 8086
Assembler directives and basic steps ALP of 8086Assembler directives and basic steps ALP of 8086
Assembler directives and basic steps ALP of 8086
Urvashi Singh
 
Part III: Assembly Language
Part III: Assembly LanguagePart III: Assembly Language
Part III: Assembly Language
Ahmed M. Abed
 
Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086
Shehrevar Davierwala
 
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfddchap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
YumnaShahzaad
 
chapt_5+6AssemblyLanguagecompleteclear.ppt
chapt_5+6AssemblyLanguagecompleteclear.pptchapt_5+6AssemblyLanguagecompleteclear.ppt
chapt_5+6AssemblyLanguagecompleteclear.ppt
mubashrabashir540
 
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
8086 Assembly Language and Serial Monitor Operation of 8086 Trainer Kit
Amit Kumer Podder
 
Part II: Assembly Fundamentals
Part II: Assembly FundamentalsPart II: Assembly Fundamentals
Part II: Assembly Fundamentals
Ahmed M. Abed
 
Stack and subroutine
Stack and subroutineStack and subroutine
Stack and subroutine
Ashim Saha
 
assembler Directives hnotesnnnnnnnn.pptx
assembler Directives hnotesnnnnnnnn.pptxassembler Directives hnotesnnnnnnnn.pptx
assembler Directives hnotesnnnnnnnn.pptx
Drkoteswararaoseelam
 
8051h.ppt microcontroller Assembly Language Programming
8051h.ppt microcontroller Assembly Language Programming8051h.ppt microcontroller Assembly Language Programming
8051h.ppt microcontroller Assembly Language Programming
anushkayadav3011
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Bilal Amjad
 
Assembly Language Programming
Assembly Language ProgrammingAssembly Language Programming
Assembly Language Programming
Niropam Das
 

Recently uploaded (20)

Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Analytical techniques in dry chemistry for heavy metal analysis and recent ad...Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Archana Verma
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptxCH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
DecodingBio
 
december 3 grade computerscience....docx
december 3 grade computerscience....docxdecember 3 grade computerscience....docx
december 3 grade computerscience....docx
TaimurAli48
 
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdfText-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
MauryaAman1
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
HLD_template_v3_thateveryonecanuseproperly
HLD_template_v3_thateveryonecanuseproperlyHLD_template_v3_thateveryonecanuseproperly
HLD_template_v3_thateveryonecanuseproperly
phuongandphan
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Afternoon Activity for Grade 9 Students in High School
Afternoon Activity for Grade 9 Students in High SchoolAfternoon Activity for Grade 9 Students in High School
Afternoon Activity for Grade 9 Students in High School
Barb790332
 
Hydrazine Chemistry in Organic Synthesis
Hydrazine Chemistry in Organic SynthesisHydrazine Chemistry in Organic Synthesis
Hydrazine Chemistry in Organic Synthesis
Vinayak Khairnar
 
Infrared Spectroscopy - Chemistry Fundamental
Infrared Spectroscopy - Chemistry  FundamentalInfrared Spectroscopy - Chemistry  Fundamental
Infrared Spectroscopy - Chemistry Fundamental
MajidAhmadi34
 
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdfCalf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
melesemelkamu81
 
DOSAGE FORM (Pharmaceutics) B Pharmacy sem-I
DOSAGE FORM  (Pharmaceutics) B Pharmacy sem-IDOSAGE FORM  (Pharmaceutics) B Pharmacy sem-I
DOSAGE FORM (Pharmaceutics) B Pharmacy sem-I
UmeshMali16
 
What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"
KlaraSchfer
 
Mining Geology as Used in Exploration.pdf
Mining Geology as Used in Exploration.pdfMining Geology as Used in Exploration.pdf
Mining Geology as Used in Exploration.pdf
jehcintah
 
Towards Scientific Foundation Models (Invited Talk)
Towards Scientific Foundation Models  (Invited Talk)Towards Scientific Foundation Models  (Invited Talk)
Towards Scientific Foundation Models (Invited Talk)
Steffen Staab
 
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesisSide Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Vinayak Khairnar
 
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].pptCh 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
joshscally027
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
Atropisomerism in Drug Discovery -Medicinal Chemistry
Atropisomerism in Drug Discovery -Medicinal ChemistryAtropisomerism in Drug Discovery -Medicinal Chemistry
Atropisomerism in Drug Discovery -Medicinal Chemistry
Vinayak Khairnar
 
Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Analytical techniques in dry chemistry for heavy metal analysis and recent ad...Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Analytical techniques in dry chemistry for heavy metal analysis and recent ad...
Archana Verma
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptxCH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
CH 1-1 The-Fascinating-World-of-Cell-Biology.pptx
DecodingBio
 
december 3 grade computerscience....docx
december 3 grade computerscience....docxdecember 3 grade computerscience....docx
december 3 grade computerscience....docx
TaimurAli48
 
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdfText-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
Text-Book-of-Organic-Chemistry-By-B.-S.-Bahl.pdf
MauryaAman1
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
HLD_template_v3_thateveryonecanuseproperly
HLD_template_v3_thateveryonecanuseproperlyHLD_template_v3_thateveryonecanuseproperly
HLD_template_v3_thateveryonecanuseproperly
phuongandphan
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Afternoon Activity for Grade 9 Students in High School
Afternoon Activity for Grade 9 Students in High SchoolAfternoon Activity for Grade 9 Students in High School
Afternoon Activity for Grade 9 Students in High School
Barb790332
 
Hydrazine Chemistry in Organic Synthesis
Hydrazine Chemistry in Organic SynthesisHydrazine Chemistry in Organic Synthesis
Hydrazine Chemistry in Organic Synthesis
Vinayak Khairnar
 
Infrared Spectroscopy - Chemistry Fundamental
Infrared Spectroscopy - Chemistry  FundamentalInfrared Spectroscopy - Chemistry  Fundamental
Infrared Spectroscopy - Chemistry Fundamental
MajidAhmadi34
 
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdfCalf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
Calf born With 2 head, 3 ear and 4 eye, Masha, SWE.pdf
melesemelkamu81
 
DOSAGE FORM (Pharmaceutics) B Pharmacy sem-I
DOSAGE FORM  (Pharmaceutics) B Pharmacy sem-IDOSAGE FORM  (Pharmaceutics) B Pharmacy sem-I
DOSAGE FORM (Pharmaceutics) B Pharmacy sem-I
UmeshMali16
 
What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"
KlaraSchfer
 
Mining Geology as Used in Exploration.pdf
Mining Geology as Used in Exploration.pdfMining Geology as Used in Exploration.pdf
Mining Geology as Used in Exploration.pdf
jehcintah
 
Towards Scientific Foundation Models (Invited Talk)
Towards Scientific Foundation Models  (Invited Talk)Towards Scientific Foundation Models  (Invited Talk)
Towards Scientific Foundation Models (Invited Talk)
Steffen Staab
 
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesisSide Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Side Reactions in Peptide Synthesis: Solution and Solid phase synthesis
Vinayak Khairnar
 
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].pptCh 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
joshscally027
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
Atropisomerism in Drug Discovery -Medicinal Chemistry
Atropisomerism in Drug Discovery -Medicinal ChemistryAtropisomerism in Drug Discovery -Medicinal Chemistry
Atropisomerism in Drug Discovery -Medicinal Chemistry
Vinayak Khairnar
 

03-IntroAssembly.pptx Introduction to assmebly language

  • 2. Presentation Outline • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 3. Constants • Integer Constants • Examples: –10, 42d, 10001101b, 0FF3Ah, 777o • Radix: b = binary, d = decimal, h = hexadecimal, and o = octal • If no radix is given, the integer constant is decimal • A hexadecimal beginning with a letter must have a leading 0 • Character and String Constants • Enclose character or string in single or double quotes • Examples: 'A', "d", 'ABC', "ABC", '4096' • Embedded quotes: "single quote ' inside", 'double quote " inside' • Each ASCII character occupies a single byte
  • 4. Assembly Language Statements • Three types of statements in assembly language • Typically, one statement should appear on a line 1. Executable Instructions • Generate machine code for the processor to execute at runtime • Instructions tell the processor what to do 2. Assembler Directives • Provide information to the assembler while translating a program • Used to define data, select memory model, etc. • Non-executable: directives are not part of instruction set 3. Macros • Shorthand notation for a group of statements • Sequence of instructions, directives, or other macros
  • 5. Instructions • Assembly language instructions have the format: [label:] mnemonic [operands] [;comment] • Instruction Label (optional) • Marks the address of an instruction, must have a colon : • Used to transfer program execution to a labeled instruction • Mnemonic • Identifies the operation (e.g. MOV, ADD, SUB, JMP, CALL) • Operands • Specify the data required by the operation • Executable instructions can have zero to three operands • Operands can be registers, memory variables, or constants
  • 6. • No operands stc ; set carry flag • One operand inc eax ; increment register eax call Clrscr ; call procedure Clrscr jmp L1 ; jump to instruction with label L1 • Two operands add ebx, ecx ; register ebx = ebx + ecx sub var1, 25; memory variable var1 = var1 - 25 • Three operands imul eax,ebx,5 ; register eax = ebx * 5 Instruction Examples
  • 7. Comments • Comments are very important! • Explain the program's purpose • When it was written, revised, and by whom • Explain data used in the program • Explain instruction sequences and algorithms used • Application-specific explanations • Single-line comments • Begin with a semicolon ; and terminate at end of line • Multi-line comments • Begin with COMMENT directive and a chosen character • End with the same chosen character
  • 8. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 9. Flat Memory Program Template TITLE Flat Memory Program Template (Template.asm) ; Program Description: ; Author: Creation Date: ; Modified by: Modification Date: .686 .MODEL FLAT, STDCALL .STACK INCLUDE Irvine32.inc .DATA ; (insert variables here) .CODE main PROC ; (insert executable instructions here) exit main ENDP ; (insert additional procedures here) END main
  • 10. TITLE and .MODEL Directives • TITLE line (optional) • Contains a brief heading of the program and the disk file name • .MODEL directive • Specifies the memory configuration • For our purposes, the FLAT memory model will be used • Linear 32-bit address space (no segmentation) • STDCALL directive tells the assembler to use … • Standard conventions for names and procedure calls • .686 processor directive • Used before the .MODEL directive • Program can use instructions of Pentium P6 architecture • At least the .386 directive should be used with the FLAT model
  • 11. .STACK, .DATA, & .CODE Directives • .STACK directive • Tells the assembler to define a runtime stack for the program • The size of the stack can be optionally specified by this directive • The runtime stack is required for procedure calls • .DATA directive • Defines an area in memory for the program data • The program's variables should be defined under this directive • Assembler will allocate and initialize the storage of variables • .CODE directive • Defines the code section of a program containing instructions • Assembler will place the instructions in the code area in memory
  • 12. INCLUDE, PROC, ENDP, and END • INCLUDE directive • Causes the assembler to include code from another file • We will include Irvine32.inc provided by the author Kip Irvine • Declares procedures implemented in the Irvine32.lib library • To use this library, you should link Irvine32.lib to your programs • PROC and ENDP directives • Used to define procedures • As a convention, we will define main as the first procedure • Additional procedures can be defined after main • END directive • Marks the end of a program • Identifies the name (main) of the program’s startup procedure
  • 13. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 14. TITLE Add and Subtract (AddSub.asm) ; This program adds and subtracts 32-bit integers. .686 .MODEL FLAT, STDCALL .STACK INCLUDE Irvine32.inc .CODE main PROC mov eax,10000h ; EAX = 10000h add eax,40000h ; EAX = 50000h sub eax,20000h ; EAX = 30000h call DumpRegs ; display registers exit main ENDP END main Adding and Subtracting Integers
  • 15. Example of Console Output Procedure DumpRegs is defined in Irvine32.lib library It produces the following console output, showing registers and flags: EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4 EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0
  • 16. Suggested Coding Standards • Some approaches to capitalization • Capitalize nothing • Capitalize everything • Capitalize all reserved words, mnemonics and register names • Capitalize only directives and operators • MASM is NOT case sensitive: does not matter what case is used • Other suggestions • Use meaningful identifier names • Use blank lines between procedures • Use indentation and spacing to align instructions and comments • Use tabs to indent instructions, but do not indent labels • Align the comments that appear after the instructions
  • 17. Understanding Program Termination • The exit at the end of main procedure is a macro • Defined in Irvine32.inc • Expanded into a call to ExitProcess that terminates the program • ExitProcess function is defined in the kernel32 library • We can replace exit with the following: push 0 ; push parameter 0 on stack call ExitProcess ; to terminate program • You can also replace exit with: INVOKE ExitProcess, 0 • PROTO directive (Prototypes) • Declares a procedure used by a program and defined elsewhere ExitProcess PROTO, ExitCode:DWORD • Specifies the parameters and types of a given procedure
  • 18. Modified Program TITLE Add and Subtract (AddSubAlt.asm) ; This program adds and subtracts 32-bit integers .686 .MODEL flat,stdcall .STACK 4096 ; No need to include Irvine32.inc ExitProcess PROTO, dwExitCode:DWORD .code main PROC mov eax,10000h ; EAX = 10000h add eax,40000h ; EAX = 50000h sub eax,20000h ; EAX = 30000h push 0 call ExitProcess ; to terminate program main ENDP END main
  • 19. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 20. Assemble-Link-Debug Cycle • Editor • Write new (.asm) programs • Make changes to existing ones • Assembler: ML.exe program • Translate (.asm) file into object (.obj) file in machine language • Can produce a listing (.lst) file that shows the work of assembler • Linker: LINK32.exe program • Combine object (.obj) files with link library (.lib) files • Produce executable (.exe) file • Can produce optional (.map) file Edit Assemble Link Run prog.asm prog.obj prog.lst prog.exe prog.map library.lib Debug
  • 21. Assemble-Link-Debug Cycle – cont'd • MAKE32.bat • Batch command file • Assemble and link in one step • Debugger: WINDBG.exe • Trace program execution • Either step-by-step, or • Use breakpoints • View • Source (.asm) code • Registers • Memory by name & by address • Modify register & memory content • Discover errors and go back to the editor to fix the program bugs Edit Assemble Link Run prog.asm prog.obj prog.lst prog.exe prog.map library.lib Debug
  • 22. Listing File • Use it to see how your program is assembled • Contains • Source code • Object code • Relative addresses • Segment names • Symbols • Variables • Procedures • Constants Object & source code in a listing file 00000000 .code 00000000 main PROC 00000000 B8 00060000 mov eax, 60000h 00000005 05 00080000 add eax, 80000h 0000000A 2D 00020000 sub eax, 20000h 0000000F 6A 00 push 0 00000011 E8 00000000 E call ExitProcess 00000016 main ENDP END main object code (hexadecimal) source code Relative Addresses
  • 23. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 24. • BYTE, SBYTE • 8-bit unsigned integer • 8-bit signed integer • WORD, SWORD • 16-bit unsigned integer • 16-bit signed integer • DWORD, SDWORD • 32-bit unsigned integer • 32-bit signed integer • QWORD, TBYTE • 64-bit integer • 80-bit integer ❖ REAL4 ✧ IEEE single-precision float ✧ Occupies 4 bytes ❖ REAL8 ✧ IEEE double-precision ✧ Occupies 8 bytes ❖ REAL10 ✧ IEEE extended-precision ✧ Occupies 10 bytes Intrinsic Data Types
  • 25. Data Definition Statement • Sets aside storage in memory for a variable • May optionally assign a name (label) to the data • Syntax: [name] directive initializer [, initializer] . . . val1 BYTE 10 • All initializers become binary data in memory
  • 26. Defining BYTE and SBYTE Data value1 BYTE 'A' ; character constant value2 BYTE 0 ; smallest unsigned byte value3 BYTE 255 ; largest unsigned byte value4 SBYTE -128 ; smallest signed byte value5 SBYTE +127 ; largest signed byte value6 BYTE ? ; uninitialized byte Each of the following defines a single byte of storage: • MASM does not prevent you from initializing a BYTE with a negative value, but it's considered poor style. • If you declare a SBYTE variable, the Microsoft debugger will automatically display its value in decimal with a leading sign.
  • 27. Defining Byte Arrays list1 BYTE 10,20,30,40 list2 BYTE 10,20,30,40 BYTE 50,60,70,80 BYTE 81,82,83,84 list3 BYTE ?,32,41h,00100010b list4 BYTE 0Ah,20h,'A',22h Examples that use multiple initializers
  • 28. Defining Strings • A string is implemented as an array of characters • For convenience, it is usually enclosed in quotation marks • It is often terminated with a NULL char (byte value = 0) • Examples: str1 BYTE "Enter your name", 0 str2 BYTE 'Error: halting program', 0 str3 BYTE 'A','E','I','O','U' greeting BYTE "Welcome to the Encryption " BYTE "Demo Program", 0
  • 29. Defining Strings – cont'd • To continue a single string across multiple lines, end each line with a comma menu BYTE "Checking Account",0dh,0ah,0dh,0ah, "1. Create a new account",0dh,0ah, "2. Open an existing account",0dh,0ah, "3. Credit the account",0dh,0ah, "4. Debit the account",0dh,0ah, "5. Exit",0ah,0ah, "Choice> ",0 ❖ End-of-line character sequence: ✧ 0Dh = 13 = carriage return ✧ 0Ah = 10 = line feed Idea: Define all strings used by your program in the same area of the data segment
  • 30. Using the DUP Operator • Use DUP to allocate space for an array or string • Advantage: more compact than using a list of initializers • Syntax counter DUP ( argument ) Counter and argument must be constants expressions • The DUP operator may also be nested var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero var2 BYTE 20 DUP(?) ; 20 bytes, all uninitialized var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK" var4 BYTE 10,3 DUP(0),20 ; 5 bytes: 10, 0, 0, 0, 20 var5 BYTE 2 DUP(5 DUP('*'), 5 DUP('!')) ; '*****!!!!!*****!!!!!'
  • 31. Defining 16-bit and 32-bit Data • Define storage for 16-bit and 32-bit integers • Signed and Unsigned • Single or multiple initial values word1 WORD 65535 ; largest unsigned 16-bit value word2 SWORD –32768 ; smallest signed 16-bit value word3 WORD "AB" ; two characters fit in a WORD array1 WORD 1,2,3,4,5 ; array of 5 unsigned words array2 SWORD 5 DUP(?) ; array of 5 signed words dword1 DWORD 0ffffffffh ; largest unsigned 32-bit value dword2 SDWORD –2147483648 ; smallest signed 32-bit value array3 DWORD 20 DUP(?) ; 20 unsigned double words array4 SDWORD –3,–2,–1,0,1 ; 5 signed double words
  • 32. QWORD, TBYTE, and REAL Data quad1 QWORD 1234567812345678h val1 TBYTE 1000000000123456789Ah rVal1 REAL4 -2.1 rVal2 REAL8 3.2E-260 rVal3 REAL10 4.6E+4096 array REAL4 20 DUP(0.0) ❖ QWORD and TBYTE ✧ Define storage for 64-bit and 80-bit integers ✧ Signed and Unsigned ❖ REAL4, REAL8, and REAL10 ✧ Defining storage for 32-bit, 64-bit, and 80-bit floating- point data
  • 33. • Assembler builds a symbol table • So we can refer to the allocated storage space by name • Assembler keeps track of each name and its offset • Offset of a variable is relative to the address of the first variable • Example Symbol Table .DATA Name Offset value WORD 0 value 0 sum DWORD 0 sum 2 marks WORD 10 DUP (?) marks 6 msg BYTE 'The grade is:',0msg 26 char1 BYTE ? char1 40 Symbol Table
  • 34. • Processors can order bytes within a word in two ways • Little Endian Byte Ordering • Memory address = Address of least significant byte • Examples: Intel 80x86 • Big Endian Byte Ordering • Memory address = Address of most significant byte • Examples: MIPS, Motorola 68k, SPARC Byte Ordering and Endianness Byte 0 Byte 1 Byte 2 Byte 3 32-bit Register MSB LSB . . . . . . Byte 0 Byte 1 Byte 2 Byte 3 a a+3 a+2 a+1 Memory address Byte 3 Byte 0 Byte 1 Byte 2 Byte 3 32-bit Register MSB LSB . . . . . . Byte 0 Byte 1 Byte 2 a a+3 a+2 a+1 Memory address
  • 35. Adding Variables to AddSub TITLE Add and Subtract, Version 2 (AddSub2.asm) .686 .MODEL FLAT, STDCALL .STACK INCLUDE Irvine32.inc .DATA val1 DWORD 10000h val2 DWORD 40000h val3 DWORD 20000h result DWORD ? .CODE main PROC mov eax,val1 ; start with 10000h add eax,val2 ; add 40000h sub eax,val3 ; subtract 20000h mov result,eax ; store the result (30000h) call DumpRegs ; display the registers exit main ENDP END main
  • 36. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 37. Defining Symbolic Constants • Symbolic Constant • Just a name used in the assembly language program • Processed by the assembler pure text substitution ⇒ • Assembler does NOT allocate memory for symbolic constants • Assembler provides three directives: • = directive • EQU directive • TEXTEQU directive • Defining constants has two advantages: • Improves program readability • Helps in software maintenance: changes are done in one place
  • 38. Equal-Sign Directive • Name = Expression • Name is called a symbolic constant • Expression is an integer constant expression • Good programming style to use symbols • Name can be redefined in the program COUNT = 500 ; NOT a variable (NO memory allocation) . . . mov eax, COUNT ; mov eax, 500 . . . COUNT = 600 ; Processed by the assembler . . . mov ebx, COUNT ; mov ebx, 600
  • 39. • Three Formats: Name EQU Expression Integer constant expression Name EQU Symbol Existing symbol name Name EQU <text> Any text may appear within < …> • No Redefinition: Name cannot be redefined with EQU EQU Directive SIZE EQU 10*10 ; Integer constant expression PI EQU <3.1416> ; Real symbolic constant PressKey EQU <"Press any key to continue...",0> .DATA prompt BYTE PressKey
  • 40. TEXTEQU Directive • TEXTEQU creates a text macro. Three Formats: Name TEXTEQU <text> assign any text to name Name TEXTEQU textmacro assign existing text macro Name TEXTEQU %constExpr constant integer expression • Name can be redefined at any time (unlike EQU) ROWSIZE = 5 COUNT TEXTEQU %(ROWSIZE * 2) ; evaluates to 10 MOVAL TEXTEQU <mov al,COUNT> ContMsg TEXTEQU <"Do you wish to continue (Y/N)?"> .DATA prompt BYTE ContMsg .CODE MOVAL ; generates: mov al,10
  • 41. Next . . . • Basic Elements of Assembly Language • Flat Memory Program Template • Example: Adding and Subtracting Integers • Assembling, Linking, and Debugging Programs • Defining Data • Defining Symbolic Constants • Data-Related Operators and Directives
  • 42. OFFSET Operator .DATA bVal BYTE ? ; Assume bVal is at 00404000h wVal WORD ? dVal DWORD ? dVal2 DWORD ? .CODE mov esi, OFFSET bVal ; ESI = 00404000h mov esi, OFFSET wVal ; ESI = 00404001h mov esi, OFFSET dVal ; ESI = 00404003h mov esi, OFFSET dVal2 ; ESI = 00404007h ❖ OFFSET = address of a variable within its segment ✧ In FLAT memory, one address space is used for code and data ✧ OFFSET = linear address of a variable (32-bit number)
  • 43. ALIGN Directive • ALIGN directive aligns a variable in memory • Syntax: ALIGN bound • Where bound can be 1, 2, 4, or 16 • Address of a variable should be a multiple of bound • Assembler inserts empty bytes to enforce alignment .DATA ; Assume that b1 BYTE ? ; Address of b1 = 00404000h ALIGN 2 ; Skip one byte w1 WORD ? ; Address of w1 = 00404002h w2 WORD ? ; Address of w2 = 00404004h ALIGN 4 ; Skip two bytes d1 DWORD ? ; Address of d1 = 00404008h d2 DWORD ? ; Address of d2 = 0040400Ch w1 b1 404000 w2 404004 d1 404008 d2 40400C
  • 44. TYPE Operator • TYPE operator • Size, in bytes, of a single element of a data declaration .DATA var1 BYTE ? var2 WORD ? var3 DWORD ? var4 QWORD ? .CODE mov eax, TYPE var1 ; eax = 1 mov eax, TYPE var2 ; eax = 2 mov eax, TYPE var3 ; eax = 4 mov eax, TYPE var4 ; eax = 8
  • 45. ❖ LENGTHOF operator ✧ Counts the number of elements in a single data declaration LENGTHOF Operator .DATA array1 WORD 30 DUP(?),0,0 array2 WORD 5 DUP(3 DUP(?)) array3 DWORD 1,2,3,4 digitStr BYTE "12345678",0 .code mov ecx, LENGTHOF array1 ; ecx = 32 mov ecx, LENGTHOF array2 ; ecx = 15 mov ecx, LENGTHOF array3 ; ecx = 4 mov ecx, LENGTHOF digitStr ; ecx = 9
  • 46. SIZEOF Operator .DATA array1 WORD 30 DUP(?),0,0 array2 WORD 5 DUP(3 DUP(?)) array3 DWORD 1,2,3,4 digitStr BYTE "12345678",0 .CODE mov ecx, SIZEOF array1 ; ecx = 64 mov ecx, SIZEOF array2 ; ecx = 30 mov ecx, SIZEOF array3 ; ecx = 16 mov ecx, SIZEOF digitStr ; ecx = 9 ❖ SIZEOF operator ✧ Counts the number of bytes in a data declaration ✧ Equivalent to multiplying LENGTHOF by TYPE
  • 47. Multiple Line Declarations .DATA array WORD 10,20, 30,40, 50,60 .CODE mov eax, LENGTHOF array ; 6 mov ebx, SIZEOF array ; 12 A data declaration spans multiple lines if each line (except the last) ends with a comma The LENGTHOF and SIZEOF operators include all lines belonging to the declaration .DATA array WORD 10,20 WORD 30,40 WORD 50,60 .CODE mov eax, LENGTHOF array ; 2 mov ebx, SIZEOF array ; 4 In the following example, array identifies the first line WORD declaration only Compare the values returned by LENGTHOF and SIZEOF here to those on the left
  • 48. ❖ PTR Provides the flexibility to access part of a variable ❖ Can also be used to combine elements of a smaller type ❖ Syntax: Type PTR (Overrides default type of a variable) PTR Operator .DATA dval DWORD 12345678h array BYTE 00h,10h,20h,30h .CODE mov al, dval mov al, BYTE PTR dval mov ax, dval mov ax, WORD PTR dval mov eax, array mov eax, DWORD PTR array 78 56 34 12 dval 00 10 20 30 array ; error – why? ; al = 78h ; error – why? ; ax = 5678h ; error – why? ; eax = 30201000h
  • 49. LABEL Directive • Assigns an alternate name and type to a memory location • LABEL does not allocate any storage of its own • Removes the need for the PTR operator • Format: Name LABEL Type .DATA dval LABEL DWORD wval LABEL WORD blist BYTE 00h,10h,00h,20h .CODE mov eax, dval mov cx, wval mov dl, blist wval 00 10 00 20 blist dval ; eax = 20001000h ; cx = 1000h ; dl = 00h
  • 51. Summary • Instruction executed at runtime ⇒ • Directive interpreted by the assembler ⇒ • .STACK, .DATA, and .CODE • Define the code, data, and stack sections of a program • Edit-Assemble-Link-Debug Cycle • Data Definition • BYTE, WORD, DWORD, QWORD, etc. • DUP operator • Symbolic Constant • =, EQU, and TEXTEQU directives • Data-Related Operators • OFFSET, ALIGN, TYPE, LENGTHOF, SIZEOF, PTR, and LABEL