This document provides an outline for a course on neural networks and fuzzy systems. The course is divided into two parts, with the first 11 weeks covering neural networks topics like multi-layer feedforward networks, backpropagation, and gradient descent. The document explains that multi-layer networks are needed to solve nonlinear problems by dividing the problem space into smaller linear regions. It also provides notation for multi-layer networks and shows how backpropagation works to calculate weight updates for each layer.