SlideShare a Scribd company logo
Information and Knowledge Management                                                           www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011



Graph Cut Based Local Binary Patterns for Content Based Image
                         Retrieval
                                            Dilkeshwar Pandey
                                        Department of Mathematics
                            Deen Bandhu Chotu Ram University of Science & Tech.
                                         Murthal, Harayana, India
                                        Email:dilkeshwar@hotmail.com

                                               Rajive Kumar
             Department of Mathematics, Deen Bandhu Chotu Ram University of Science & Tech.
                                         Murthal, Harayana, India
                                   E-mail: rajiv_kansal@yahoo.com
Abstract
In this paper, a new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content
based image retrieval (CBIR) is proposed. In graph cut theory, each node is compared with the all other nodes
for edge map generation. The same concept is utilized at LBP calculation which is generating nine LBP patterns
from a given 3×3 pattern. Finally, nine LBP histograms are calculated which are used as a feature vector for
image retrieval. Two experiments have been carried out for proving the worth of our algorithm. It is further
mentioned that the database considered for experiments are Brodatz database (DB1), and MIT VisTex database
(DB2). The results after being investigated shows a significant improvement in terms of their evaluation
measures as compared to LBP and other existing transform domain techniques.
Keywords: Feature Extraction; Local Binary Patterns; Image Retrieval


1. Introduction
With the rapid expansion of worldwide network and advances in information technology there is an explosive
growth of multimedia databases and digital libraries. This demands an effective tool that allow users to search
and browse efficiently through such a large collections. In many areas of commerce, government, academia,
hospitals, entertainment, and crime preventions large collections of digital images are being created. Usually, the
only way of searching these collections was by using keyword indexing, or simply by browsing. However, as
the databases grew larger, people realized that the traditional keywords based methods to retrieve a particular
image in such a large collection are inefficient. To describe the images with keywords with a satisfying degree
of concreteness and detail, we need a very large and sophisticated keyword system containing typically several
hundreds of different keywords. One of the serious drawbacks of this approach is the need of trained personnel
not only to attach keywords to each image (which may take several minutes for one single image) but also to
retrieve images by selecting keywords, as we usually need to know all keywords to choose good ones. Further,
such a keyword based approach is mostly influenced by subjective decision about image content and also it is
very difficult to change a keyword based system afterwards. Therefore, new techniques are needed to overcome
these limitations. Digital image databases however, open the way to content based searching. It is common
phrase that an image speaks thousands of words. So instead of manual annotation by text based keywords,
images should be indexed by their own visual contents, such as color, texture and shape. The main advantage of
this method is its ability to support the visual queries. Hence researchers turned attention to content based image
retrieval (CBIR) methods. Several methods achieving effective feature extraction have been proposed in the
literature [Rui et al., Smeulders et al., kokare et al., and Liu et al.].
Swain et al. proposed the concept of color histogram in 1991 and also introduced the histogram intersection
distance metric to measure the distance between the histograms of images. Stricker et al. used the first three
central moments called mean, standard deviation and skewness of each color for image retrieval. Pass et al.
introduced color coherence vector (CCV). CCV partitions the each histogram bin into two types, i.e., coherent,
if it belongs to a large uniformly colored region or incoherent, if it does not. Huang et al. used a new color
feature called color correlogram which characterizes not only the color distributions of pixels, but also spatial
correlation of pair of colors. Lu et al. proposed color feature based on vector quantized (VQ) index histograms
in the discrete cosine transform (DCT) domain. They computed 12 histograms, four for each color component


18 | P a g e
www.iiste.org
Information and Knowledge Management                                                           www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
from 12 DCT-VQ index sequences.
Texture is another salient and indispensable feature for CBIR. Smith et al. used the mean and variance of the
wavelet coefficients as texture features for CBIR. Moghaddam et al. proposed the Gabor wavelet correlogram
(GWC) for CBIR. Ahmadian et al. used the wavelet transform for texture classification. Moghaddam et al.
introduced new algorithm called wavelet correlogram (WC). Saadatmand et al. improved the performance of
WC algorithm by optimizing the quantization thresholds using genetic algorithm (GA). Birgale et al. and
Subrahmanyam et al. combined the color (color histogram) and texture (wavelet transform) features for CBIR.
Subrahmanyam et al. proposed correlogram algorithm for image retrieval using wavelets and rotated wavelets
(WC+RWC).
The recently proposed local binary pattern (LBP) features are designed for texture description. Ojala et al.
proposed the LBP and these LBPs are converted to rotational invariant for texture classification. Pietikainen et
al. proposed the rotational invariant texture classification using feature distributions. Ahonen et al. and Zhao et
al used the LBP operator facial expression analysis and recognition. Heikkila et al. proposed the background
modeling and detection by using LBP. Huang et al. proposed the extended LBP for shape localization. Heikkila
et al. used the LBP for interest region description. Li et al. used the combination of Gabor filter and LBP for
texture segmentation. Zhang et al. proposed the local derivative pattern for face recognition. They have
considered LBP as a nondirectional first order local pattern, which are the binary results of the first-order
derivative in images.
 To improve the retrieval performance in terms of retrieval accuracy, in this paper, we proposed the graph cut
based local binary patterns (GCLBP) for CBIR. Two experiments have been carried out on Brodatz and MIT
VisTex databases for proving the worth of our algorithm. The results after being investigated show a significant
improvement in terms of their evaluation measures as compared to LBP and other existing transform domain
techniques.
The organization of the paper as follows: In section 1, a brief review of image retrieval and related work is
given. Section 2, presents a concise review of local binary patterns (LBP). Section 3, presents the feature
extraction, proposed system framework, and similarity measure. Experimental results and discussions are given
in section 4. Based on above work conclusions are derived in section 5.


2. 2.     Local Binary Patterns
Ojala et al. proposed the local binary pattern (LBP) operator which describes the surroundings of a pixel by
generating a bit-code from the binary derivatives of a pixel as a complementary measure for local image
contrast. The LBP operator takes the eight neighboring pixels using the center gray value as a threshold. The
operator generates a binary code 1 if the neighbor is greater or equal than the center otherwise generates a binary
code 0. The eight neighboring binary code can be represented by a 8-bit number. The LBP operator outputs for
all the pixels in the image can be accumulated to form a histogram. Fig.1 shows an example of LBP operator.
For given a center pixel in the image, LBP value is computed by comparing it with those of its neighborhoods:
              P −1
   LBPP , R = ∑ 2i × f ( gi − g c )
              i =0
                                                                                   (1)
            1       x≥0
   f ( x) = 
            0       else
                                                                                         (2)
where gc is the gray value of the center pixel, g i is the gray value of its neighbors, P is the number of
neighbors and R is the radius of the neighborhood. Fig. 2 shows the examples of circular neighbor sets for
different configurations of ( P, R) .
The LBP measure the local structure by assigning unique identifiers, the binary number, to various micro-
structures in the image. Thus, LBP capture many structures in one unified framework. In the example in Fig.
3(b), the local structure is a vertical edge with a leftward intensity gradient. Other microstructures are assigned
different LBP codes, e.g., corners and spots, as illustrated in Fig. 4. By varying the radius R and the number of
samples P, the structures are measured at different scales, and LBP allows for measuring large scale structures
without smoothing effects, as is, e.g., the case for Gaussian-based filters.




19 | P a g e
www.iiste.org
Information and Knowledge Management                                                           www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011




                                     Fig. 1: LBP calculation for 3×3 pattern




                              Fig. 2: Circular neighborhood sets for different (P,R)




Fig. 3. Illustration of LBP. (a) The LBP filter is defined by two parameters; the circle radius R and the number of
samples P on the circle. (b) Local structure is measured w.r.t. a given pixel by placing the center of the circle in
the position of that pixel. (c) Samples on the circle are binarized by thresholding with the intensity in the center
pixel as threshold value. Black is zero and white is one. The example image shown in (b) has an LBP code of
124. (d) Rotating the example image in (b) 900 clockwise reduces the LBP code to 31, which is the smallest
possible code for this binary pattern. This principle is used to achieve rotation invariance.




Fig. 4: Various microstructures measured by LBP. The gray circle indicates the center pixel. Black and white
circles are binarized samples; black is zero and white is one.
After identifying the LBP pattern of each pixel (j, k), the whole image is represented by building a histogram:


20 | P a g e
www.iiste.org
Information and Knowledge Management                                                              www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
                 N1   N2
   H LBP (l ) = ∑∑ f (LBP ( j , k ), l ); l ∈ [0, (2 P − 1)]
                 j =1 k =1

                                                                             (3)
                1      x= y
   f ( x, y ) = 
                0      else
                                                                                      (4)
where the size of input image is N1 × N 2 .


3. 3.        Feature Extraction
The weighted graph (Li Xi et al.,) with no self loops is G = (V , E ,W ) , where V = {1, 2,......., N } the node set is
(N=m.n is the total number of pixels in Q ∈ R m×n ) E ⊆ V × V represents the edge set, and W = ( wij )           denotes
                                                                                                           N×N

an affinity matrix with the element wij being the edge weight between nodes i and j.
Based on the above graph cut theory we compare the each pixel of 3×3 pattern with remaining eight pixel gray
values for generating binary code. Finally, nine LBP patterns are collected for LBP histogram calculation and
these are used as a feature vector for image retrieval. The flowchart of the proposed system is shown in Fig. 5
and algorithm for the same is given below:


3.1 Proposed System Framework (GCLBP)
Algorithm:
Input: Image;                   Output: Retrieval Result
        1.   Load the input image.
        2.   Collect the 3×3 pattern for a center pixel i.
              • Construct the graph cut for 3×3 pattern.
              • Generate nine LBP patterns.
              • Go to next center pixel.
        3.   Calculate the graph cut LBP (GCLBP) histograms.
        4.   Form the feature vector by concatenating the nine LBP features.
        5.   Calculate the best matches using Eq. (5).
        6.   Retrieve the number of top matches.




                                              Fig. 5: Proposed system framework

3.2 Similarity Measurement
In the presented work d1 similarity distance metric is used as shown below:

21 | P a g e
www.iiste.org
Information and Knowledge Management                                                            www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
               Lg        f I1 ,i − f Q ,i
   D(Q, I1 ) = ∑
               i =1   1 + f I1 ,i + f Q ,i
                                                                                    (5)
where Q is query image, Lg is feature vector length, I1 is image in database; f I ,i is ith feature of image I in the
database, f Q , i is ith feature of query image Q.


4. Experimental Results and Discussions
For the work reported in this paper, retrieval tests are conducted on two different databases (Brodatz, and MIT
VisTex) and results are presented separately.


4.1. Database (DB1)
  The database DB1 used in our experiment that consists of 116 different textures comprising of 109 textures
from Brodatz texture photographic album [Brodatz P.], seven textures from USC database
[http://sipi.usc.edu/database/]. The size of each texture is 512 × 512 and is further divided into sixteen 128 × 128
non-overlapping sub-images, thus creating a database of 1856 (116 × 16) images.
                         No. of Relevant Images Retrieved
   Precision ( P ) =                                      × 100
                          Total No. of Images Retrieved
                                                                           (6)
                                             N1
                                        1
   Group Precision (GP ) =                 ∑P
                                        N1 i =1
                                                                                 (7)
                                        1 Γ1
   Average Retrieval Precision ( ARR ) = ∑ GP
                                        Γ1 j =1
                                                                           (8)
                 Number of relevant images retrieved
   Recall ( R) =
                  Total Number of relevant images
                                                                           (9)
                         1 N1
    Group Recall (GR ) =    ∑R
                         N1 i =1
                                                                                  (10)
                                                    Γ1
                                                  1
     Average Retrieval Rate ( ARR ) =                ∑ GR
                                                  Γ1 j =1
                                                                        (11)
where N1 is number of relevant images and Γ1 is number of groups.

Table 1: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP)
         (%)
                                           Number of top matches considered
   Method
                 1          3          5        7        9         11         13         15         16
     LBP       100       89.17     84.67     81.71    79.01     76.33      73.86      71.18        69.65
   GCLBP 100             93.19     89.73     87.27     85.02    82.71      80.47      77.88        76.45




Table 2: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%)
                                               Number of top matches considered
 Method
                    16           32           48           64            80              96            112
   LBP            69.65         80.16       84.47         87.05        89.02           90.44          91.63

22 | P a g e
www.iiste.org
Information and Knowledge Management                                                      www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
 GCLBP           76.45       84.57         87.85         89.79          91.13          92.18          93.03
 DT-CWT          74.16       83.83         87.13         89.11          90.48          91.48          92.3
DT-RCWT          72.33       80.88         84.32         86.28          87.82          88.98          89.92

Table 3: Performance of proposed method (GCLBP) with different distance measures in terms of average
          retrieval rate (ARR) (%)
                          Distance             Number of top matches considered
         Method
                          Measure     16     32     48        64       80      96        112
                         Manhattan  79.89  86.82  89.61     91.30    92.46   93.34     94.04
                          Canberra  77.73  85.09  88.24     90.02    91.37   92.32     93.07
         GCLBP
                          Euclidean 78.81  85.59  88.43     90.24    91.54   92.47     93.25
                             d1     76.45  84.57   87.85    89.79     91.13   92.18     93.03




        Fig. 6: comparison of proposed method (GCLBP) with LBP on DB1 database in terms of ARP

Table 1 and Fig. 6 summarize the retrieval results of the proposed method (GCLBP), and LBP in terms of
average retrieval precision and Table 2 and Fig. 7 illustrate the performance of proposed method (GCLBP), LBP
and other transform domain techniques in terms of average retrieval rate. Table 3 and Fig. 8 summarize the
performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate.




23 | P a g e
www.iiste.org
Information and Knowledge Management                                                          www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011




Fig. 7: Comparison of proposed method (GCLBP) with: (a) LBP on DB1 database in terms of ARR, (b) with
LBP and other transform domain features on DB1 database in terms of ARR.
From the Tables 1 to 3 and Fig. 6 to 8 the following can be observed:
   1. The average retrieval precision of proposed method (GCLBP) (100% to 76.45%) is more as compared to
        LBP (100% to 69.65%).
   2. The average retrieval rate of GCLBP (76.45% to 93.03%) is more compared to LBP (69.65% to
        91.63%), DT-CWT (74.16% to 92.3%), and DT-RCWT (72.33% to 89.92%).
   3. The performance of the proposed method with Manhattan distance (79.89% to 94.04%) is more as
        compared to Canberra (77.73% to 93.07%), Euclidean (78.81% to 93.25%), and d1 distance (76.45% to
        93.03%).
From Tables 1 to 3, Fig. 6 to 8, and above observations, it is clear that the proposed method is outperforming the
LBP and other transform domain techniques. Fig. 9 illustrates the retrieval results of query image based on the
proposed method (GCLBP).




24 | P a g e
www.iiste.org
Information and Knowledge Management                                                       www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011




Fig. 8: Performance of proposed method (GCLBP) with different distance measures on DB1 database in terms
of ARR.

4.2. Database DB2
    The     database  DB2     used    in    our    experiment      consists    of    40    different   textures
[http://vismod.www.media.mit.edu]. The size of each texture is 512 × 512 . Each 512 × 512 image is divided into
sixteen 128 × 128 non-overlapping sub-images, thus creating a database of 640 (40 × 16) images. The
performance of the proposed method is measured in terms of ARP and ARR.

Table 4: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP)
           (%)
                                              Number of top matches considered
   Method
                      1          3        5        7         9        11         13         15         16
     LBP          100         93.85    90.90    88.37     85.45    82.69      79.85      76.35        74.39
   GCLBP          100         97.13    95.25    93.05     90.45    87.52      84.87      81.46        79.44




25 | P a g e
www.iiste.org
Information and Knowledge Management                                                      www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011




Fig. 9: Retrieval results of proposed method (GCLBP) of query image: (a) 1, (b) 724, and (c) 1850 of database
DB1.
   Table 4 and Fig. 10 summarize the retrieval results of the proposed method (GCLBP) and LBP in terms of
average retrieval precision and Table 5 and Fig. 11 illustrate the performance of proposed method (GCLBP) and
LBP in terms of average retrieval rate. Table 6 and Fig. 12 summarize the performance of proposed method
(GCLBP) with different distance measures in terms of average retrieval rate.
From the Tables 4 to 6 and Fig. 10 to 12 the following can be observed:
   1. The average retrieval precision of proposed method (GCLBP) (100% to 79.44%) is more as compared to


26 | P a g e
www.iiste.org
Information and Knowledge Management                                                        www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
       LBP (100% to 74.39%).
   2.  The average retrieval rate of GCLBP (79.44% to 97.24%) is more compared to LBP (74.39% to
       97.08%).
    3. The performance of the proposed method with d1 distance (79.44% to 97.24%) is more as compared to
       Canberra (74.7% to 93.48%), Euclidean (80.07% to 97.20%), and Manhattan distance (80.47% to
       95.46%).
From Tables 4 to 6, Fig. 10 to 12, and above observations, it is clear that the proposed method is outperforming
the LBP and other transform domain techniques.




        Fig. 10: comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARP

Table 5: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%)
                                               Number of top matches considered
                 Method
                                    16      32      48        64        80        96        112
                    LBP           74.39    86.69   91.14     93.77    95.35     96.36     97.08
                 GCLBP            79.44    88.36   92.00     94.22    95.54     96.53     97.24




27 | P a g e
www.iiste.org
Information and Knowledge Management                                                  www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011




Fig. 11: Comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARR.




Fig. 12: Performance of proposed method (GCLBP) with different distance measures on DB2 database in terms
of ARR.



Table 6: Performance of proposed method (GCLBP) with different distance measures in terms of average
         retrieval rate (ARR) (%)
                           Distance            Number of top matches considered
          Method
                           Measure    16     32      48        64        80      96      112
                          Manhattan 80.47  88.62   91.560 93.21        94.23   94.97    95.46
                          Canberra  74.70  84.57   88.260 90.58        92.00   92.81    93.48
          GCLBP
                          Euclidean 80.07  88.44   92.07     94.17     95.56   96.52    97.20
                              d1     79.44  88.36   92.00     94.22    95.54    96.53   97.24



28 | P a g e
www.iiste.org
Information and Knowledge Management                                                        www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
5. Conclusion
A new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content based image
retrieval (CBIR) is proposed in this paper. The proposed method extracts the nine LBP patterns from a given
3×3 pattern and these are used as the features. Two experiments have been carried out for proving the worth of
our algorithm. The results after being investigated shows a significant improvement in terms of their evaluation
measures as compared to LBP and other existing transform domain techniques.


References
Ahonen T., Hadid A., Pietikainen M., Face description with local binary patterns: Applications to face
recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006.
Ahmadian A., Mostafa A. (2003), An Efficient Texture Classification Algorithm using Gabor wavelet, 25th
Annual international conf. of the IEEE EMBS, Cancun, Mexico, 930-933.
Birgale L., Kokare M., Doye D. (2006), Color and Texture Features for Content Based Image Retrieval,
International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, 146 – 149.
Brodatz P. (1996), “Textures: A Photographic Album for Artists and Designers,” New York: Dover.
Heikkil M., Pietikainen M., A texture based method for modeling the background and detecting moving objects,
IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, 2006.
Heikkila M., Pietikainen M., Schmid C., Description of interest regions with local binary patterns, Elsevie J.
Pattern recognition, 42: 425-436, 2009.
Huang J., Kumar S. R., and Mitra M., Combining supervised learning with color correlograms for content-based
image retrieval, Proc. 5th ACM Multimedia Conf., (1997) 325–334.
Kokare M., Chatterji B. N., Biswas P. K., A survey on current content based image retrieval methods, IETE J.
Res., 48 (3&4) 261–271, 2002.
Liu Ying, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, Asurvey of content-based image retrieval with high-
level semantics, Elsevier J. Pattern Recognition, 40, 262-282, 2007.
Li M., Staunton R. C., Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie
J. Pattern recognition, 29: 664-672, 2008.
Li Xi, Hu Weiming, Zhang Zhongfei, and Wang Hanzi, Heat Kernel Based Local Binary Pattern for Face
Representation, IEEE Signal Processing Letters, 17 (3) 308–311 2010.
Lu Z. M. and Burkhardt H., Colour image retrieval based on DCT domain vector quantization index histograms,
J. Electron. Lett., 41 (17) (2005) 29–30.
MIT Vision and Modeling Group, Vision Texture. [Online]. Available: http://vismod.www.media.mit.edu.
Moghaddam H. A., Khajoie T. T., Rouhi A. H and Saadatmand T. M. (2005), Wavelet Correlogram: A new
approach for image indexing and retrieval, Elsevier J. Pattern Recognition, 38 2506-2518.
Moghaddam H. A. and Saadatmand T. M. (2006), Gabor wavelet Correlogram Algorithm for Image Indexing
and Retrieval, 18th Int. Conf. Pattern Recognition, K.N. Toosi Univ. of Technol., Tehran, Iran, 925-928.
Moghaddam H. A., Khajoie T. T. and Rouhi A. H. (2003), A New Algorithm for Image Indexing and Retrieval
Using Wavelet Correlogram, Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, 2 497-
500.
Ojala T., Pietikainen M., Harwood D., A comparative sudy of texture measures with classification based on
feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.
Ojala T., Pietikainen M., Maenpaa T., Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, 2002.
Pass G., Zabih R., and Miller J., Comparing images using color coherence vectors, Proc. 4th ACM Multimedia
Conf., Boston, Massachusetts, US, (1997) 65–73.
Pietikainen M., T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek,
Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52,
2000.
Rui Y. and Huang T. S., Image retrieval: Current techniques, promising directions and open issues, J.. Vis.
Commun. Image Represent., 10 (1999) 39–62.

29 | P a g e
www.iiste.org
Information and Knowledge Management                                                           www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)
Vol 1, No.1, 2011
Saadatmand T. M. and Moghaddam H. A., Enhanced Wavelet Correlogram Methods for Image Indexing and
Retrieval, IEEE Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, (2005) 541-544.
Saadatmand T. M. and Moghaddam H. A., A Novel Evolutionary Approach for Optimizing Content Based
Image Retrieval, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153.
Smeulders A. W.M., Worring M., Santini S., Gupta A., and Jain R., Content-based image retrieval at the end of
the early years, IEEE Trans. Pattern Anal. Mach. Intell., 22 (12) 1349–1380, 2000.
Smith J. R. and Chang S. F., Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, Columbia Univ., New York, (1996) 2239–2242.
Stricker M. and Oreng M., Similarity of color images, Proc. SPIE, Storage and Retrieval for Image and Video
Databases, (1995) 381–392.
Subrahmanyam M., Gonde A. B. and Maheshwari R. P., Color and Texture Features for Image Indexing and
Retrieval, IEEE Int. Advance Computing Conf., Patial, India, (2009) 1411-1416.
Subrahmanyam Murala, Maheshwari R. P., Balasubramanian R., A Correlogram Algorithm for Image Indexing
and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering.
Swain M. J. and Ballar D. H., Indexing via color histograms, Proc. 3rd Int. Conf. Computer Vision, Rochester
Univ., NY, (1991) 11–32.
Tan X. and Triggs B., Enhanced local texture feature sets for face recognition under difficult lighting conditions,
IEEE Tans. Image Proc., 19(6): 1635-1650, 2010.
University of Suthern California, Signal and Image Processing Institute, Rotated Textures. [Online]. Available:
http://sipi.usc.edu/database/.
Zhao G., Pietikainen M., Dynamic texture recognition using local binary patterns with an application to facial
expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, 2007.




30 | P a g e
www.iiste.org
International Journals Call for Paper
The IISTE, a U.S. publisher, is currently hosting the academic journals listed below. The peer review process of the following journals
usually takes LESS THAN 14 business days and IISTE usually publishes a qualified article within 30 days. Authors should
send their full paper to the following email address. More information can be found in the IISTE website : www.iiste.org

Business, Economics, Finance and Management               PAPER SUBMISSION EMAIL
European Journal of Business and Management               EJBM@iiste.org
Research Journal of Finance and Accounting                RJFA@iiste.org
Journal of Economics and Sustainable Development          JESD@iiste.org
Information and Knowledge Management                      IKM@iiste.org
Developing Country Studies                                DCS@iiste.org
Industrial Engineering Letters                            IEL@iiste.org


Physical Sciences, Mathematics and Chemistry              PAPER SUBMISSION EMAIL
Journal of Natural Sciences Research                      JNSR@iiste.org
Chemistry and Materials Research                          CMR@iiste.org
Mathematical Theory and Modeling                          MTM@iiste.org
Advances in Physics Theories and Applications             APTA@iiste.org
Chemical and Process Engineering Research                 CPER@iiste.org


Engineering, Technology and Systems                       PAPER SUBMISSION EMAIL
Computer Engineering and Intelligent Systems              CEIS@iiste.org
Innovative Systems Design and Engineering                 ISDE@iiste.org
Journal of Energy Technologies and Policy                 JETP@iiste.org
Information and Knowledge Management                      IKM@iiste.org
Control Theory and Informatics                            CTI@iiste.org
Journal of Information Engineering and Applications       JIEA@iiste.org
Industrial Engineering Letters                            IEL@iiste.org
Network and Complex Systems                               NCS@iiste.org


Environment, Civil, Materials Sciences                    PAPER SUBMISSION EMAIL
Journal of Environment and Earth Science                  JEES@iiste.org
Civil and Environmental Research                          CER@iiste.org
Journal of Natural Sciences Research                      JNSR@iiste.org
Civil and Environmental Research                          CER@iiste.org


Life Science, Food and Medical Sciences                   PAPER SUBMISSION EMAIL
Journal of Natural Sciences Research                      JNSR@iiste.org
Journal of Biology, Agriculture and Healthcare            JBAH@iiste.org
Food Science and Quality Management                       FSQM@iiste.org
Chemistry and Materials Research                          CMR@iiste.org


Education, and other Social Sciences                      PAPER SUBMISSION EMAIL
Journal of Education and Practice                         JEP@iiste.org
Journal of Law, Policy and Globalization                  JLPG@iiste.org                       Global knowledge sharing:
New Media and Mass Communication                          NMMC@iiste.org                       EBSCO, Index Copernicus, Ulrich's
Journal of Energy Technologies and Policy                 JETP@iiste.org                       Periodicals Directory, JournalTOCS, PKP
Historical Research Letter                                HRL@iiste.org                        Open Archives Harvester, Bielefeld
                                                                                               Academic Search Engine, Elektronische
Public Policy and Administration Research                 PPAR@iiste.org                       Zeitschriftenbibliothek EZB, Open J-Gate,
International Affairs and Global Strategy                 IAGS@iiste.org                       OCLC WorldCat, Universe Digtial Library ,
Research on Humanities and Social Sciences                RHSS@iiste.org                       NewJour, Google Scholar.

Developing Country Studies                                DCS@iiste.org                        IISTE is member of CrossRef. All journals
Arts and Design Studies                                   ADS@iiste.org                        have high IC Impact Factor Values (ICV).
Ad

More Related Content

What's hot (17)

MMFO: modified moth flame optimization algorithm for region based RGB color i...
MMFO: modified moth flame optimization algorithm for region based RGB color i...MMFO: modified moth flame optimization algorithm for region based RGB color i...
MMFO: modified moth flame optimization algorithm for region based RGB color i...
IJECEIAES
 
Image Retrieval using Equalized Histogram Image Bins Moments
Image Retrieval using Equalized Histogram Image Bins MomentsImage Retrieval using Equalized Histogram Image Bins Moments
Image Retrieval using Equalized Histogram Image Bins Moments
IDES Editor
 
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
IJERA Editor
 
A Review of Feature Extraction Techniques for CBIR based on SVM
A Review of Feature Extraction Techniques for CBIR based on SVMA Review of Feature Extraction Techniques for CBIR based on SVM
A Review of Feature Extraction Techniques for CBIR based on SVM
IJEEE
 
A comparative study on content based image retrieval methods
A comparative study on content based image retrieval methodsA comparative study on content based image retrieval methods
A comparative study on content based image retrieval methods
IJLT EMAS
 
Wavelet-Based Color Histogram on Content-Based Image Retrieval
Wavelet-Based Color Histogram on Content-Based Image RetrievalWavelet-Based Color Histogram on Content-Based Image Retrieval
Wavelet-Based Color Histogram on Content-Based Image Retrieval
TELKOMNIKA JOURNAL
 
A Survey on Image Retrieval By Different Features and Techniques
A Survey on Image Retrieval By Different Features and TechniquesA Survey on Image Retrieval By Different Features and Techniques
A Survey on Image Retrieval By Different Features and Techniques
IRJET Journal
 
Mf3421892195
Mf3421892195Mf3421892195
Mf3421892195
IJERA Editor
 
Review of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopesReview of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopes
sipij
 
Survey on Content Based Image Retrieval
Survey on Content Based Image Retrieval Survey on Content Based Image Retrieval
Survey on Content Based Image Retrieval
ijcax
 
Text-Image Separation in Document Images using Boundary/Perimeter Detection
Text-Image Separation in Document Images using Boundary/Perimeter DetectionText-Image Separation in Document Images using Boundary/Perimeter Detection
Text-Image Separation in Document Images using Boundary/Perimeter Detection
IDES Editor
 
An Improved Way of Segmentation and Classification of Remote Sensing Images U...
An Improved Way of Segmentation and Classification of Remote Sensing Images U...An Improved Way of Segmentation and Classification of Remote Sensing Images U...
An Improved Way of Segmentation and Classification of Remote Sensing Images U...
ijsrd.com
 
IJET-V2I6P17
IJET-V2I6P17IJET-V2I6P17
IJET-V2I6P17
IJET - International Journal of Engineering and Techniques
 
Content Based Image Retrieval : Classification Using Neural Networks
Content Based Image Retrieval : Classification Using Neural NetworksContent Based Image Retrieval : Classification Using Neural Networks
Content Based Image Retrieval : Classification Using Neural Networks
ijma
 
Automated Colorization of Grayscale Images Using Texture Descriptors
Automated Colorization of Grayscale Images Using Texture DescriptorsAutomated Colorization of Grayscale Images Using Texture Descriptors
Automated Colorization of Grayscale Images Using Texture Descriptors
IDES Editor
 
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
csandit
 
An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...
IJECEIAES
 
MMFO: modified moth flame optimization algorithm for region based RGB color i...
MMFO: modified moth flame optimization algorithm for region based RGB color i...MMFO: modified moth flame optimization algorithm for region based RGB color i...
MMFO: modified moth flame optimization algorithm for region based RGB color i...
IJECEIAES
 
Image Retrieval using Equalized Histogram Image Bins Moments
Image Retrieval using Equalized Histogram Image Bins MomentsImage Retrieval using Equalized Histogram Image Bins Moments
Image Retrieval using Equalized Histogram Image Bins Moments
IDES Editor
 
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
Evaluation of Euclidean and Manhanttan Metrics In Content Based Image Retriev...
IJERA Editor
 
A Review of Feature Extraction Techniques for CBIR based on SVM
A Review of Feature Extraction Techniques for CBIR based on SVMA Review of Feature Extraction Techniques for CBIR based on SVM
A Review of Feature Extraction Techniques for CBIR based on SVM
IJEEE
 
A comparative study on content based image retrieval methods
A comparative study on content based image retrieval methodsA comparative study on content based image retrieval methods
A comparative study on content based image retrieval methods
IJLT EMAS
 
Wavelet-Based Color Histogram on Content-Based Image Retrieval
Wavelet-Based Color Histogram on Content-Based Image RetrievalWavelet-Based Color Histogram on Content-Based Image Retrieval
Wavelet-Based Color Histogram on Content-Based Image Retrieval
TELKOMNIKA JOURNAL
 
A Survey on Image Retrieval By Different Features and Techniques
A Survey on Image Retrieval By Different Features and TechniquesA Survey on Image Retrieval By Different Features and Techniques
A Survey on Image Retrieval By Different Features and Techniques
IRJET Journal
 
Review of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopesReview of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopes
sipij
 
Survey on Content Based Image Retrieval
Survey on Content Based Image Retrieval Survey on Content Based Image Retrieval
Survey on Content Based Image Retrieval
ijcax
 
Text-Image Separation in Document Images using Boundary/Perimeter Detection
Text-Image Separation in Document Images using Boundary/Perimeter DetectionText-Image Separation in Document Images using Boundary/Perimeter Detection
Text-Image Separation in Document Images using Boundary/Perimeter Detection
IDES Editor
 
An Improved Way of Segmentation and Classification of Remote Sensing Images U...
An Improved Way of Segmentation and Classification of Remote Sensing Images U...An Improved Way of Segmentation and Classification of Remote Sensing Images U...
An Improved Way of Segmentation and Classification of Remote Sensing Images U...
ijsrd.com
 
Content Based Image Retrieval : Classification Using Neural Networks
Content Based Image Retrieval : Classification Using Neural NetworksContent Based Image Retrieval : Classification Using Neural Networks
Content Based Image Retrieval : Classification Using Neural Networks
ijma
 
Automated Colorization of Grayscale Images Using Texture Descriptors
Automated Colorization of Grayscale Images Using Texture DescriptorsAutomated Colorization of Grayscale Images Using Texture Descriptors
Automated Colorization of Grayscale Images Using Texture Descriptors
IDES Editor
 
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
C OMPARATIVE S TUDY OF D IMENSIONALITY R EDUCTION T ECHNIQUES U SING PCA AND ...
csandit
 
An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...
IJECEIAES
 

Viewers also liked (19)

Amalgamation of contour, texture, color, edge, and spatial features for effic...
Amalgamation of contour, texture, color, edge, and spatial features for effic...Amalgamation of contour, texture, color, edge, and spatial features for effic...
Amalgamation of contour, texture, color, edge, and spatial features for effic...
eSAT Journals
 
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
Kazi Mostafa
 
Features Analysis in CBIR Systems
Features Analysis in CBIR SystemsFeatures Analysis in CBIR Systems
Features Analysis in CBIR Systems
Editor IJCATR
 
Content based image retrieval for agriculture crops
Content based image retrieval for agriculture cropsContent based image retrieval for agriculture crops
Content based image retrieval for agriculture crops
Aboul Ella Hassanien
 
D010332630
D010332630D010332630
D010332630
IOSR Journals
 
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
YFCC100M HybridNet fc6 Deep Features for Content-Based Image RetrievalYFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
Fabrizio Falchi
 
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
guesta2cfc
 
Periscope: A Content-based Image Retrieval Engine
Periscope: A Content-based Image Retrieval EnginePeriscope: A Content-based Image Retrieval Engine
Periscope: A Content-based Image Retrieval Engine
Antigoni-Maria Founta
 
Scalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewordsScalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewords
Sasi Kumar
 
Slides
SlidesSlides
Slides
rajasekhar442
 
Content Based Image Retrieval
Content Based Image RetrievalContent Based Image Retrieval
Content Based Image Retrieval
SOURAV KAR
 
Region Of Interest Extraction
Region Of Interest ExtractionRegion Of Interest Extraction
Region Of Interest Extraction
Gopi Krishnan Nambiar
 
Lbp based edge-texture features for object recoginition
Lbp based edge-texture features for object recoginitionLbp based edge-texture features for object recoginition
Lbp based edge-texture features for object recoginition
IGEEKS TECHNOLOGIES
 
Local binary pattern
Local binary patternLocal binary pattern
Local binary pattern
International Islamic University
 
Content Based Image Retrieval
Content Based Image Retrieval Content Based Image Retrieval
Content Based Image Retrieval
Swati Chauhan
 
Facial expression recognition based on local binary patterns final
Facial expression recognition based on local binary patterns finalFacial expression recognition based on local binary patterns final
Facial expression recognition based on local binary patterns final
ahmad abdelhafeez
 
face recognition system using LBP
face recognition system using LBPface recognition system using LBP
face recognition system using LBP
Marwan H. Noman
 
Content based image retrieval(cbir)
Content based image retrieval(cbir)Content based image retrieval(cbir)
Content based image retrieval(cbir)
paddu123
 
The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017
LinkedIn
 
Amalgamation of contour, texture, color, edge, and spatial features for effic...
Amalgamation of contour, texture, color, edge, and spatial features for effic...Amalgamation of contour, texture, color, edge, and spatial features for effic...
Amalgamation of contour, texture, color, edge, and spatial features for effic...
eSAT Journals
 
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
A Hybrid Trademark Retrieval System Using Four-Gray-Level Zernike Moments & ...
Kazi Mostafa
 
Features Analysis in CBIR Systems
Features Analysis in CBIR SystemsFeatures Analysis in CBIR Systems
Features Analysis in CBIR Systems
Editor IJCATR
 
Content based image retrieval for agriculture crops
Content based image retrieval for agriculture cropsContent based image retrieval for agriculture crops
Content based image retrieval for agriculture crops
Aboul Ella Hassanien
 
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
YFCC100M HybridNet fc6 Deep Features for Content-Based Image RetrievalYFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
Fabrizio Falchi
 
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
CONTENT BASED MEDICAL IMAGE INDEXING AND RETRIEVAL USING A FUZZY COMPACT COMP...
guesta2cfc
 
Periscope: A Content-based Image Retrieval Engine
Periscope: A Content-based Image Retrieval EnginePeriscope: A Content-based Image Retrieval Engine
Periscope: A Content-based Image Retrieval Engine
Antigoni-Maria Founta
 
Scalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewordsScalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewords
Sasi Kumar
 
Content Based Image Retrieval
Content Based Image RetrievalContent Based Image Retrieval
Content Based Image Retrieval
SOURAV KAR
 
Lbp based edge-texture features for object recoginition
Lbp based edge-texture features for object recoginitionLbp based edge-texture features for object recoginition
Lbp based edge-texture features for object recoginition
IGEEKS TECHNOLOGIES
 
Content Based Image Retrieval
Content Based Image Retrieval Content Based Image Retrieval
Content Based Image Retrieval
Swati Chauhan
 
Facial expression recognition based on local binary patterns final
Facial expression recognition based on local binary patterns finalFacial expression recognition based on local binary patterns final
Facial expression recognition based on local binary patterns final
ahmad abdelhafeez
 
face recognition system using LBP
face recognition system using LBPface recognition system using LBP
face recognition system using LBP
Marwan H. Noman
 
Content based image retrieval(cbir)
Content based image retrieval(cbir)Content based image retrieval(cbir)
Content based image retrieval(cbir)
paddu123
 
The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017
LinkedIn
 
Ad

Similar to 11.graph cut based local binary patterns for content based image retrieval (20)

A survey on feature descriptors for texture image classification
A survey on feature descriptors for texture image classificationA survey on feature descriptors for texture image classification
A survey on feature descriptors for texture image classification
IRJET Journal
 
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET Journal
 
tScene classification using pyramid histogram of
tScene classification using pyramid histogram oftScene classification using pyramid histogram of
tScene classification using pyramid histogram of
ijcsa
 
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
sipij
 
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLINGAPPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
sipij
 
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVALEFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
sipij
 
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
IAEME Publication
 
Low level features for image retrieval based
Low level features for image retrieval basedLow level features for image retrieval based
Low level features for image retrieval based
caijjournal
 
An Hypergraph Object Oriented Model For Image Segmentation And Annotation
An Hypergraph Object Oriented Model For Image Segmentation And AnnotationAn Hypergraph Object Oriented Model For Image Segmentation And Annotation
An Hypergraph Object Oriented Model For Image Segmentation And Annotation
Crystal Sanchez
 
Texture descriptor based on local combination adaptive ternary pattern
Texture descriptor based on local combination adaptive ternary patternTexture descriptor based on local combination adaptive ternary pattern
Texture descriptor based on local combination adaptive ternary pattern
Projectsatbangalore
 
Modified CSLBP
Modified CSLBPModified CSLBP
Modified CSLBP
IJECEIAES
 
HSI Classification: Analysis
HSI Classification: AnalysisHSI Classification: Analysis
HSI Classification: Analysis
IRJET Journal
 
Speeded-up and Compact Visual Codebook for Object Recognition
Speeded-up and Compact Visual Codebook for Object RecognitionSpeeded-up and Compact Visual Codebook for Object Recognition
Speeded-up and Compact Visual Codebook for Object Recognition
CSCJournals
 
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
IJERA Editor
 
B0310408
B0310408B0310408
B0310408
ijceronline
 
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
IOSR Journals
 
Implementation of High Dimension Colour Transform in Domain of Image Processing
Implementation of High Dimension Colour Transform in Domain of Image ProcessingImplementation of High Dimension Colour Transform in Domain of Image Processing
Implementation of High Dimension Colour Transform in Domain of Image Processing
IRJET Journal
 
A Novel Feature Extraction Scheme for Medical X-Ray Images
A Novel Feature Extraction Scheme for Medical X-Ray ImagesA Novel Feature Extraction Scheme for Medical X-Ray Images
A Novel Feature Extraction Scheme for Medical X-Ray Images
IJERA Editor
 
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORMPDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
IJCI JOURNAL
 
A Survey of Modern Character Recognition Techniques
A Survey of Modern Character Recognition TechniquesA Survey of Modern Character Recognition Techniques
A Survey of Modern Character Recognition Techniques
ijsrd.com
 
A survey on feature descriptors for texture image classification
A survey on feature descriptors for texture image classificationA survey on feature descriptors for texture image classification
A survey on feature descriptors for texture image classification
IRJET Journal
 
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET- Digital Image Forgery Detection using Local Binary Patterns (LBP) and ...
IRJET Journal
 
tScene classification using pyramid histogram of
tScene classification using pyramid histogram oftScene classification using pyramid histogram of
tScene classification using pyramid histogram of
ijcsa
 
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING
sipij
 
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLINGAPPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
APPLYING R-SPATIOGRAM IN OBJECT TRACKING FOR OCCLUSION HANDLING
sipij
 
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVALEFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
EFFICIENT IMAGE RETRIEVAL USING REGION BASED IMAGE RETRIEVAL
sipij
 
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
HYPERSPECTRAL IMAGERY CLASSIFICATION USING TECHNOLOGIES OF COMPUTATIONAL INTE...
IAEME Publication
 
Low level features for image retrieval based
Low level features for image retrieval basedLow level features for image retrieval based
Low level features for image retrieval based
caijjournal
 
An Hypergraph Object Oriented Model For Image Segmentation And Annotation
An Hypergraph Object Oriented Model For Image Segmentation And AnnotationAn Hypergraph Object Oriented Model For Image Segmentation And Annotation
An Hypergraph Object Oriented Model For Image Segmentation And Annotation
Crystal Sanchez
 
Texture descriptor based on local combination adaptive ternary pattern
Texture descriptor based on local combination adaptive ternary patternTexture descriptor based on local combination adaptive ternary pattern
Texture descriptor based on local combination adaptive ternary pattern
Projectsatbangalore
 
Modified CSLBP
Modified CSLBPModified CSLBP
Modified CSLBP
IJECEIAES
 
HSI Classification: Analysis
HSI Classification: AnalysisHSI Classification: Analysis
HSI Classification: Analysis
IRJET Journal
 
Speeded-up and Compact Visual Codebook for Object Recognition
Speeded-up and Compact Visual Codebook for Object RecognitionSpeeded-up and Compact Visual Codebook for Object Recognition
Speeded-up and Compact Visual Codebook for Object Recognition
CSCJournals
 
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
Query Image Searching With Integrated Textual and Visual Relevance Feedback f...
IJERA Editor
 
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
IOSR Journals
 
Implementation of High Dimension Colour Transform in Domain of Image Processing
Implementation of High Dimension Colour Transform in Domain of Image ProcessingImplementation of High Dimension Colour Transform in Domain of Image Processing
Implementation of High Dimension Colour Transform in Domain of Image Processing
IRJET Journal
 
A Novel Feature Extraction Scheme for Medical X-Ray Images
A Novel Feature Extraction Scheme for Medical X-Ray ImagesA Novel Feature Extraction Scheme for Medical X-Ray Images
A Novel Feature Extraction Scheme for Medical X-Ray Images
IJERA Editor
 
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORMPDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
IJCI JOURNAL
 
A Survey of Modern Character Recognition Techniques
A Survey of Modern Character Recognition TechniquesA Survey of Modern Character Recognition Techniques
A Survey of Modern Character Recognition Techniques
ijsrd.com
 
Ad

More from Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
Alexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
Alexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
Alexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
Alexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
Alexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
Alexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
Alexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
Alexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
Alexander Decker
 
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
Alexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
Alexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
Alexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
Alexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
Alexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
Alexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
Alexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
Alexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
Alexander Decker
 

Recently uploaded (20)

Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Vibe Coding_ Develop a web application using AI (1).pdf
Vibe Coding_ Develop a web application using AI (1).pdfVibe Coding_ Develop a web application using AI (1).pdf
Vibe Coding_ Develop a web application using AI (1).pdf
Baiju Muthukadan
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Vibe Coding_ Develop a web application using AI (1).pdf
Vibe Coding_ Develop a web application using AI (1).pdfVibe Coding_ Develop a web application using AI (1).pdf
Vibe Coding_ Develop a web application using AI (1).pdf
Baiju Muthukadan
 

11.graph cut based local binary patterns for content based image retrieval

  • 1. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Graph Cut Based Local Binary Patterns for Content Based Image Retrieval Dilkeshwar Pandey Department of Mathematics Deen Bandhu Chotu Ram University of Science & Tech. Murthal, Harayana, India Email:[email protected] Rajive Kumar Department of Mathematics, Deen Bandhu Chotu Ram University of Science & Tech. Murthal, Harayana, India E-mail: [email protected] Abstract In this paper, a new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content based image retrieval (CBIR) is proposed. In graph cut theory, each node is compared with the all other nodes for edge map generation. The same concept is utilized at LBP calculation which is generating nine LBP patterns from a given 3×3 pattern. Finally, nine LBP histograms are calculated which are used as a feature vector for image retrieval. Two experiments have been carried out for proving the worth of our algorithm. It is further mentioned that the database considered for experiments are Brodatz database (DB1), and MIT VisTex database (DB2). The results after being investigated shows a significant improvement in terms of their evaluation measures as compared to LBP and other existing transform domain techniques. Keywords: Feature Extraction; Local Binary Patterns; Image Retrieval 1. Introduction With the rapid expansion of worldwide network and advances in information technology there is an explosive growth of multimedia databases and digital libraries. This demands an effective tool that allow users to search and browse efficiently through such a large collections. In many areas of commerce, government, academia, hospitals, entertainment, and crime preventions large collections of digital images are being created. Usually, the only way of searching these collections was by using keyword indexing, or simply by browsing. However, as the databases grew larger, people realized that the traditional keywords based methods to retrieve a particular image in such a large collection are inefficient. To describe the images with keywords with a satisfying degree of concreteness and detail, we need a very large and sophisticated keyword system containing typically several hundreds of different keywords. One of the serious drawbacks of this approach is the need of trained personnel not only to attach keywords to each image (which may take several minutes for one single image) but also to retrieve images by selecting keywords, as we usually need to know all keywords to choose good ones. Further, such a keyword based approach is mostly influenced by subjective decision about image content and also it is very difficult to change a keyword based system afterwards. Therefore, new techniques are needed to overcome these limitations. Digital image databases however, open the way to content based searching. It is common phrase that an image speaks thousands of words. So instead of manual annotation by text based keywords, images should be indexed by their own visual contents, such as color, texture and shape. The main advantage of this method is its ability to support the visual queries. Hence researchers turned attention to content based image retrieval (CBIR) methods. Several methods achieving effective feature extraction have been proposed in the literature [Rui et al., Smeulders et al., kokare et al., and Liu et al.]. Swain et al. proposed the concept of color histogram in 1991 and also introduced the histogram intersection distance metric to measure the distance between the histograms of images. Stricker et al. used the first three central moments called mean, standard deviation and skewness of each color for image retrieval. Pass et al. introduced color coherence vector (CCV). CCV partitions the each histogram bin into two types, i.e., coherent, if it belongs to a large uniformly colored region or incoherent, if it does not. Huang et al. used a new color feature called color correlogram which characterizes not only the color distributions of pixels, but also spatial correlation of pair of colors. Lu et al. proposed color feature based on vector quantized (VQ) index histograms in the discrete cosine transform (DCT) domain. They computed 12 histograms, four for each color component 18 | P a g e www.iiste.org
  • 2. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 from 12 DCT-VQ index sequences. Texture is another salient and indispensable feature for CBIR. Smith et al. used the mean and variance of the wavelet coefficients as texture features for CBIR. Moghaddam et al. proposed the Gabor wavelet correlogram (GWC) for CBIR. Ahmadian et al. used the wavelet transform for texture classification. Moghaddam et al. introduced new algorithm called wavelet correlogram (WC). Saadatmand et al. improved the performance of WC algorithm by optimizing the quantization thresholds using genetic algorithm (GA). Birgale et al. and Subrahmanyam et al. combined the color (color histogram) and texture (wavelet transform) features for CBIR. Subrahmanyam et al. proposed correlogram algorithm for image retrieval using wavelets and rotated wavelets (WC+RWC). The recently proposed local binary pattern (LBP) features are designed for texture description. Ojala et al. proposed the LBP and these LBPs are converted to rotational invariant for texture classification. Pietikainen et al. proposed the rotational invariant texture classification using feature distributions. Ahonen et al. and Zhao et al used the LBP operator facial expression analysis and recognition. Heikkila et al. proposed the background modeling and detection by using LBP. Huang et al. proposed the extended LBP for shape localization. Heikkila et al. used the LBP for interest region description. Li et al. used the combination of Gabor filter and LBP for texture segmentation. Zhang et al. proposed the local derivative pattern for face recognition. They have considered LBP as a nondirectional first order local pattern, which are the binary results of the first-order derivative in images. To improve the retrieval performance in terms of retrieval accuracy, in this paper, we proposed the graph cut based local binary patterns (GCLBP) for CBIR. Two experiments have been carried out on Brodatz and MIT VisTex databases for proving the worth of our algorithm. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and other existing transform domain techniques. The organization of the paper as follows: In section 1, a brief review of image retrieval and related work is given. Section 2, presents a concise review of local binary patterns (LBP). Section 3, presents the feature extraction, proposed system framework, and similarity measure. Experimental results and discussions are given in section 4. Based on above work conclusions are derived in section 5. 2. 2. Local Binary Patterns Ojala et al. proposed the local binary pattern (LBP) operator which describes the surroundings of a pixel by generating a bit-code from the binary derivatives of a pixel as a complementary measure for local image contrast. The LBP operator takes the eight neighboring pixels using the center gray value as a threshold. The operator generates a binary code 1 if the neighbor is greater or equal than the center otherwise generates a binary code 0. The eight neighboring binary code can be represented by a 8-bit number. The LBP operator outputs for all the pixels in the image can be accumulated to form a histogram. Fig.1 shows an example of LBP operator. For given a center pixel in the image, LBP value is computed by comparing it with those of its neighborhoods: P −1 LBPP , R = ∑ 2i × f ( gi − g c ) i =0 (1) 1 x≥0 f ( x) =  0 else (2) where gc is the gray value of the center pixel, g i is the gray value of its neighbors, P is the number of neighbors and R is the radius of the neighborhood. Fig. 2 shows the examples of circular neighbor sets for different configurations of ( P, R) . The LBP measure the local structure by assigning unique identifiers, the binary number, to various micro- structures in the image. Thus, LBP capture many structures in one unified framework. In the example in Fig. 3(b), the local structure is a vertical edge with a leftward intensity gradient. Other microstructures are assigned different LBP codes, e.g., corners and spots, as illustrated in Fig. 4. By varying the radius R and the number of samples P, the structures are measured at different scales, and LBP allows for measuring large scale structures without smoothing effects, as is, e.g., the case for Gaussian-based filters. 19 | P a g e www.iiste.org
  • 3. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Fig. 1: LBP calculation for 3×3 pattern Fig. 2: Circular neighborhood sets for different (P,R) Fig. 3. Illustration of LBP. (a) The LBP filter is defined by two parameters; the circle radius R and the number of samples P on the circle. (b) Local structure is measured w.r.t. a given pixel by placing the center of the circle in the position of that pixel. (c) Samples on the circle are binarized by thresholding with the intensity in the center pixel as threshold value. Black is zero and white is one. The example image shown in (b) has an LBP code of 124. (d) Rotating the example image in (b) 900 clockwise reduces the LBP code to 31, which is the smallest possible code for this binary pattern. This principle is used to achieve rotation invariance. Fig. 4: Various microstructures measured by LBP. The gray circle indicates the center pixel. Black and white circles are binarized samples; black is zero and white is one. After identifying the LBP pattern of each pixel (j, k), the whole image is represented by building a histogram: 20 | P a g e www.iiste.org
  • 4. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 N1 N2 H LBP (l ) = ∑∑ f (LBP ( j , k ), l ); l ∈ [0, (2 P − 1)] j =1 k =1 (3) 1 x= y f ( x, y ) =  0 else (4) where the size of input image is N1 × N 2 . 3. 3. Feature Extraction The weighted graph (Li Xi et al.,) with no self loops is G = (V , E ,W ) , where V = {1, 2,......., N } the node set is (N=m.n is the total number of pixels in Q ∈ R m×n ) E ⊆ V × V represents the edge set, and W = ( wij ) denotes N×N an affinity matrix with the element wij being the edge weight between nodes i and j. Based on the above graph cut theory we compare the each pixel of 3×3 pattern with remaining eight pixel gray values for generating binary code. Finally, nine LBP patterns are collected for LBP histogram calculation and these are used as a feature vector for image retrieval. The flowchart of the proposed system is shown in Fig. 5 and algorithm for the same is given below: 3.1 Proposed System Framework (GCLBP) Algorithm: Input: Image; Output: Retrieval Result 1. Load the input image. 2. Collect the 3×3 pattern for a center pixel i. • Construct the graph cut for 3×3 pattern. • Generate nine LBP patterns. • Go to next center pixel. 3. Calculate the graph cut LBP (GCLBP) histograms. 4. Form the feature vector by concatenating the nine LBP features. 5. Calculate the best matches using Eq. (5). 6. Retrieve the number of top matches. Fig. 5: Proposed system framework 3.2 Similarity Measurement In the presented work d1 similarity distance metric is used as shown below: 21 | P a g e www.iiste.org
  • 5. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Lg f I1 ,i − f Q ,i D(Q, I1 ) = ∑ i =1 1 + f I1 ,i + f Q ,i (5) where Q is query image, Lg is feature vector length, I1 is image in database; f I ,i is ith feature of image I in the database, f Q , i is ith feature of query image Q. 4. Experimental Results and Discussions For the work reported in this paper, retrieval tests are conducted on two different databases (Brodatz, and MIT VisTex) and results are presented separately. 4.1. Database (DB1) The database DB1 used in our experiment that consists of 116 different textures comprising of 109 textures from Brodatz texture photographic album [Brodatz P.], seven textures from USC database [http://sipi.usc.edu/database/]. The size of each texture is 512 × 512 and is further divided into sixteen 128 × 128 non-overlapping sub-images, thus creating a database of 1856 (116 × 16) images. No. of Relevant Images Retrieved Precision ( P ) = × 100 Total No. of Images Retrieved (6) N1 1 Group Precision (GP ) = ∑P N1 i =1 (7) 1 Γ1 Average Retrieval Precision ( ARR ) = ∑ GP Γ1 j =1 (8) Number of relevant images retrieved Recall ( R) = Total Number of relevant images (9) 1 N1 Group Recall (GR ) = ∑R N1 i =1 (10) Γ1 1 Average Retrieval Rate ( ARR ) = ∑ GR Γ1 j =1 (11) where N1 is number of relevant images and Γ1 is number of groups. Table 1: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP) (%) Number of top matches considered Method 1 3 5 7 9 11 13 15 16 LBP 100 89.17 84.67 81.71 79.01 76.33 73.86 71.18 69.65 GCLBP 100 93.19 89.73 87.27 85.02 82.71 80.47 77.88 76.45 Table 2: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%) Number of top matches considered Method 16 32 48 64 80 96 112 LBP 69.65 80.16 84.47 87.05 89.02 90.44 91.63 22 | P a g e www.iiste.org
  • 6. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 GCLBP 76.45 84.57 87.85 89.79 91.13 92.18 93.03 DT-CWT 74.16 83.83 87.13 89.11 90.48 91.48 92.3 DT-RCWT 72.33 80.88 84.32 86.28 87.82 88.98 89.92 Table 3: Performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate (ARR) (%) Distance Number of top matches considered Method Measure 16 32 48 64 80 96 112 Manhattan 79.89 86.82 89.61 91.30 92.46 93.34 94.04 Canberra 77.73 85.09 88.24 90.02 91.37 92.32 93.07 GCLBP Euclidean 78.81 85.59 88.43 90.24 91.54 92.47 93.25 d1 76.45 84.57 87.85 89.79 91.13 92.18 93.03 Fig. 6: comparison of proposed method (GCLBP) with LBP on DB1 database in terms of ARP Table 1 and Fig. 6 summarize the retrieval results of the proposed method (GCLBP), and LBP in terms of average retrieval precision and Table 2 and Fig. 7 illustrate the performance of proposed method (GCLBP), LBP and other transform domain techniques in terms of average retrieval rate. Table 3 and Fig. 8 summarize the performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate. 23 | P a g e www.iiste.org
  • 7. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Fig. 7: Comparison of proposed method (GCLBP) with: (a) LBP on DB1 database in terms of ARR, (b) with LBP and other transform domain features on DB1 database in terms of ARR. From the Tables 1 to 3 and Fig. 6 to 8 the following can be observed: 1. The average retrieval precision of proposed method (GCLBP) (100% to 76.45%) is more as compared to LBP (100% to 69.65%). 2. The average retrieval rate of GCLBP (76.45% to 93.03%) is more compared to LBP (69.65% to 91.63%), DT-CWT (74.16% to 92.3%), and DT-RCWT (72.33% to 89.92%). 3. The performance of the proposed method with Manhattan distance (79.89% to 94.04%) is more as compared to Canberra (77.73% to 93.07%), Euclidean (78.81% to 93.25%), and d1 distance (76.45% to 93.03%). From Tables 1 to 3, Fig. 6 to 8, and above observations, it is clear that the proposed method is outperforming the LBP and other transform domain techniques. Fig. 9 illustrates the retrieval results of query image based on the proposed method (GCLBP). 24 | P a g e www.iiste.org
  • 8. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Fig. 8: Performance of proposed method (GCLBP) with different distance measures on DB1 database in terms of ARR. 4.2. Database DB2 The database DB2 used in our experiment consists of 40 different textures [http://vismod.www.media.mit.edu]. The size of each texture is 512 × 512 . Each 512 × 512 image is divided into sixteen 128 × 128 non-overlapping sub-images, thus creating a database of 640 (40 × 16) images. The performance of the proposed method is measured in terms of ARP and ARR. Table 4: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval precision (ARP) (%) Number of top matches considered Method 1 3 5 7 9 11 13 15 16 LBP 100 93.85 90.90 88.37 85.45 82.69 79.85 76.35 74.39 GCLBP 100 97.13 95.25 93.05 90.45 87.52 84.87 81.46 79.44 25 | P a g e www.iiste.org
  • 9. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Fig. 9: Retrieval results of proposed method (GCLBP) of query image: (a) 1, (b) 724, and (c) 1850 of database DB1. Table 4 and Fig. 10 summarize the retrieval results of the proposed method (GCLBP) and LBP in terms of average retrieval precision and Table 5 and Fig. 11 illustrate the performance of proposed method (GCLBP) and LBP in terms of average retrieval rate. Table 6 and Fig. 12 summarize the performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate. From the Tables 4 to 6 and Fig. 10 to 12 the following can be observed: 1. The average retrieval precision of proposed method (GCLBP) (100% to 79.44%) is more as compared to 26 | P a g e www.iiste.org
  • 10. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 LBP (100% to 74.39%). 2. The average retrieval rate of GCLBP (79.44% to 97.24%) is more compared to LBP (74.39% to 97.08%). 3. The performance of the proposed method with d1 distance (79.44% to 97.24%) is more as compared to Canberra (74.7% to 93.48%), Euclidean (80.07% to 97.20%), and Manhattan distance (80.47% to 95.46%). From Tables 4 to 6, Fig. 10 to 12, and above observations, it is clear that the proposed method is outperforming the LBP and other transform domain techniques. Fig. 10: comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARP Table 5: Retrieval results of proposed method (GCLBP) and LBP in terms of average retrieval rate (ARR) (%) Number of top matches considered Method 16 32 48 64 80 96 112 LBP 74.39 86.69 91.14 93.77 95.35 96.36 97.08 GCLBP 79.44 88.36 92.00 94.22 95.54 96.53 97.24 27 | P a g e www.iiste.org
  • 11. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Fig. 11: Comparison of proposed method (GCLBP) with LBP on DB2 database in terms of ARR. Fig. 12: Performance of proposed method (GCLBP) with different distance measures on DB2 database in terms of ARR. Table 6: Performance of proposed method (GCLBP) with different distance measures in terms of average retrieval rate (ARR) (%) Distance Number of top matches considered Method Measure 16 32 48 64 80 96 112 Manhattan 80.47 88.62 91.560 93.21 94.23 94.97 95.46 Canberra 74.70 84.57 88.260 90.58 92.00 92.81 93.48 GCLBP Euclidean 80.07 88.44 92.07 94.17 95.56 96.52 97.20 d1 79.44 88.36 92.00 94.22 95.54 96.53 97.24 28 | P a g e www.iiste.org
  • 12. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 5. Conclusion A new algorithm which is based on the graph cut theory and local binary patterns (LBP) for content based image retrieval (CBIR) is proposed in this paper. The proposed method extracts the nine LBP patterns from a given 3×3 pattern and these are used as the features. Two experiments have been carried out for proving the worth of our algorithm. The results after being investigated shows a significant improvement in terms of their evaluation measures as compared to LBP and other existing transform domain techniques. References Ahonen T., Hadid A., Pietikainen M., Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006. Ahmadian A., Mostafa A. (2003), An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, 930-933. Birgale L., Kokare M., Doye D. (2006), Color and Texture Features for Content Based Image Retrieval, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, 146 – 149. Brodatz P. (1996), “Textures: A Photographic Album for Artists and Designers,” New York: Dover. Heikkil M., Pietikainen M., A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, 2006. Heikkila M., Pietikainen M., Schmid C., Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, 2009. Huang J., Kumar S. R., and Mitra M., Combining supervised learning with color correlograms for content-based image retrieval, Proc. 5th ACM Multimedia Conf., (1997) 325–334. Kokare M., Chatterji B. N., Biswas P. K., A survey on current content based image retrieval methods, IETE J. Res., 48 (3&4) 261–271, 2002. Liu Ying, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, Asurvey of content-based image retrieval with high- level semantics, Elsevier J. Pattern Recognition, 40, 262-282, 2007. Li M., Staunton R. C., Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, 2008. Li Xi, Hu Weiming, Zhang Zhongfei, and Wang Hanzi, Heat Kernel Based Local Binary Pattern for Face Representation, IEEE Signal Processing Letters, 17 (3) 308–311 2010. Lu Z. M. and Burkhardt H., Colour image retrieval based on DCT domain vector quantization index histograms, J. Electron. Lett., 41 (17) (2005) 29–30. MIT Vision and Modeling Group, Vision Texture. [Online]. Available: http://vismod.www.media.mit.edu. Moghaddam H. A., Khajoie T. T., Rouhi A. H and Saadatmand T. M. (2005), Wavelet Correlogram: A new approach for image indexing and retrieval, Elsevier J. Pattern Recognition, 38 2506-2518. Moghaddam H. A. and Saadatmand T. M. (2006), Gabor wavelet Correlogram Algorithm for Image Indexing and Retrieval, 18th Int. Conf. Pattern Recognition, K.N. Toosi Univ. of Technol., Tehran, Iran, 925-928. Moghaddam H. A., Khajoie T. T. and Rouhi A. H. (2003), A New Algorithm for Image Indexing and Retrieval Using Wavelet Correlogram, Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, 2 497- 500. Ojala T., Pietikainen M., Harwood D., A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996. Ojala T., Pietikainen M., Maenpaa T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, 2002. Pass G., Zabih R., and Miller J., Comparing images using color coherence vectors, Proc. 4th ACM Multimedia Conf., Boston, Massachusetts, US, (1997) 65–73. Pietikainen M., T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000. Rui Y. and Huang T. S., Image retrieval: Current techniques, promising directions and open issues, J.. Vis. Commun. Image Represent., 10 (1999) 39–62. 29 | P a g e www.iiste.org
  • 13. Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 1, No.1, 2011 Saadatmand T. M. and Moghaddam H. A., Enhanced Wavelet Correlogram Methods for Image Indexing and Retrieval, IEEE Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, (2005) 541-544. Saadatmand T. M. and Moghaddam H. A., A Novel Evolutionary Approach for Optimizing Content Based Image Retrieval, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153. Smeulders A. W.M., Worring M., Santini S., Gupta A., and Jain R., Content-based image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell., 22 (12) 1349–1380, 2000. Smith J. R. and Chang S. F., Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ., New York, (1996) 2239–2242. Stricker M. and Oreng M., Similarity of color images, Proc. SPIE, Storage and Retrieval for Image and Video Databases, (1995) 381–392. Subrahmanyam M., Gonde A. B. and Maheshwari R. P., Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf., Patial, India, (2009) 1411-1416. Subrahmanyam Murala, Maheshwari R. P., Balasubramanian R., A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering. Swain M. J. and Ballar D. H., Indexing via color histograms, Proc. 3rd Int. Conf. Computer Vision, Rochester Univ., NY, (1991) 11–32. Tan X. and Triggs B., Enhanced local texture feature sets for face recognition under difficult lighting conditions, IEEE Tans. Image Proc., 19(6): 1635-1650, 2010. University of Suthern California, Signal and Image Processing Institute, Rotated Textures. [Online]. Available: http://sipi.usc.edu/database/. Zhao G., Pietikainen M., Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, 2007. 30 | P a g e www.iiste.org
  • 14. International Journals Call for Paper The IISTE, a U.S. publisher, is currently hosting the academic journals listed below. The peer review process of the following journals usually takes LESS THAN 14 business days and IISTE usually publishes a qualified article within 30 days. Authors should send their full paper to the following email address. More information can be found in the IISTE website : www.iiste.org Business, Economics, Finance and Management PAPER SUBMISSION EMAIL European Journal of Business and Management [email protected] Research Journal of Finance and Accounting [email protected] Journal of Economics and Sustainable Development [email protected] Information and Knowledge Management [email protected] Developing Country Studies [email protected] Industrial Engineering Letters [email protected] Physical Sciences, Mathematics and Chemistry PAPER SUBMISSION EMAIL Journal of Natural Sciences Research [email protected] Chemistry and Materials Research [email protected] Mathematical Theory and Modeling [email protected] Advances in Physics Theories and Applications [email protected] Chemical and Process Engineering Research [email protected] Engineering, Technology and Systems PAPER SUBMISSION EMAIL Computer Engineering and Intelligent Systems [email protected] Innovative Systems Design and Engineering [email protected] Journal of Energy Technologies and Policy [email protected] Information and Knowledge Management [email protected] Control Theory and Informatics [email protected] Journal of Information Engineering and Applications [email protected] Industrial Engineering Letters [email protected] Network and Complex Systems [email protected] Environment, Civil, Materials Sciences PAPER SUBMISSION EMAIL Journal of Environment and Earth Science [email protected] Civil and Environmental Research [email protected] Journal of Natural Sciences Research [email protected] Civil and Environmental Research [email protected] Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL Journal of Natural Sciences Research [email protected] Journal of Biology, Agriculture and Healthcare [email protected] Food Science and Quality Management [email protected] Chemistry and Materials Research [email protected] Education, and other Social Sciences PAPER SUBMISSION EMAIL Journal of Education and Practice [email protected] Journal of Law, Policy and Globalization [email protected] Global knowledge sharing: New Media and Mass Communication [email protected] EBSCO, Index Copernicus, Ulrich's Journal of Energy Technologies and Policy [email protected] Periodicals Directory, JournalTOCS, PKP Historical Research Letter [email protected] Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Public Policy and Administration Research [email protected] Zeitschriftenbibliothek EZB, Open J-Gate, International Affairs and Global Strategy [email protected] OCLC WorldCat, Universe Digtial Library , Research on Humanities and Social Sciences [email protected] NewJour, Google Scholar. Developing Country Studies [email protected] IISTE is member of CrossRef. All journals Arts and Design Studies [email protected] have high IC Impact Factor Values (ICV).