SlideShare a Scribd company logo
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
18 Data Streams
Ad

More Related Content

What's hot (20)

HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 
Hadoop & MapReduce
Hadoop & MapReduceHadoop & MapReduce
Hadoop & MapReduce
Newvewm
 
5.3 mining sequential patterns
5.3 mining sequential patterns5.3 mining sequential patterns
5.3 mining sequential patterns
Krish_ver2
 
Data preprocessing using Machine Learning
Data  preprocessing using Machine Learning Data  preprocessing using Machine Learning
Data preprocessing using Machine Learning
Gopal Sakarkar
 
3. mining frequent patterns
3. mining frequent patterns3. mining frequent patterns
3. mining frequent patterns
Azad public school
 
Mining Data Streams
Mining Data StreamsMining Data Streams
Mining Data Streams
SujaAldrin
 
PAC Learning
PAC LearningPAC Learning
PAC Learning
Sanghyuk Chun
 
Data streaming fundamentals
Data streaming fundamentalsData streaming fundamentals
Data streaming fundamentals
Mohammed Fazuluddin
 
Artificial Neural Networks for Data Mining
Artificial Neural Networks for Data MiningArtificial Neural Networks for Data Mining
Artificial Neural Networks for Data Mining
Amity University | FMS - DU | IMT | Stratford University | KKMI International Institute | AIMA | DTU
 
Data cube computation
Data cube computationData cube computation
Data cube computation
Rashmi Sheikh
 
Inductive bias
Inductive biasInductive bias
Inductive bias
swapnac12
 
State space search
State space searchState space search
State space search
chauhankapil
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Using prior knowledge to initialize the hypothesis,kbann
Using prior knowledge to initialize the hypothesis,kbannUsing prior knowledge to initialize the hypothesis,kbann
Using prior knowledge to initialize the hypothesis,kbann
swapnac12
 
Schemas for multidimensional databases
Schemas for multidimensional databasesSchemas for multidimensional databases
Schemas for multidimensional databases
yazad dumasia
 
Data mining: Classification and prediction
Data mining: Classification and predictionData mining: Classification and prediction
Data mining: Classification and prediction
DataminingTools Inc
 
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Salah Amean
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
2.4 rule based classification
2.4 rule based classification2.4 rule based classification
2.4 rule based classification
Krish_ver2
 
Machine Learning and Real-World Applications
Machine Learning and Real-World ApplicationsMachine Learning and Real-World Applications
Machine Learning and Real-World Applications
MachinePulse
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 
Hadoop & MapReduce
Hadoop & MapReduceHadoop & MapReduce
Hadoop & MapReduce
Newvewm
 
5.3 mining sequential patterns
5.3 mining sequential patterns5.3 mining sequential patterns
5.3 mining sequential patterns
Krish_ver2
 
Data preprocessing using Machine Learning
Data  preprocessing using Machine Learning Data  preprocessing using Machine Learning
Data preprocessing using Machine Learning
Gopal Sakarkar
 
Mining Data Streams
Mining Data StreamsMining Data Streams
Mining Data Streams
SujaAldrin
 
Data cube computation
Data cube computationData cube computation
Data cube computation
Rashmi Sheikh
 
Inductive bias
Inductive biasInductive bias
Inductive bias
swapnac12
 
State space search
State space searchState space search
State space search
chauhankapil
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Using prior knowledge to initialize the hypothesis,kbann
Using prior knowledge to initialize the hypothesis,kbannUsing prior knowledge to initialize the hypothesis,kbann
Using prior knowledge to initialize the hypothesis,kbann
swapnac12
 
Schemas for multidimensional databases
Schemas for multidimensional databasesSchemas for multidimensional databases
Schemas for multidimensional databases
yazad dumasia
 
Data mining: Classification and prediction
Data mining: Classification and predictionData mining: Classification and prediction
Data mining: Classification and prediction
DataminingTools Inc
 
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Data Mining: Concepts and Techniques chapter 07 : Advanced Frequent Pattern M...
Salah Amean
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
2.4 rule based classification
2.4 rule based classification2.4 rule based classification
2.4 rule based classification
Krish_ver2
 
Machine Learning and Real-World Applications
Machine Learning and Real-World ApplicationsMachine Learning and Real-World Applications
Machine Learning and Real-World Applications
MachinePulse
 

Similar to 18 Data Streams (20)

Jewei Hans & Kamber Chapter 8
Jewei Hans & Kamber  Chapter 8Jewei Hans & Kamber  Chapter 8
Jewei Hans & Kamber Chapter 8
Houw Liong The
 
Semantics in Sensor Networks
Semantics in Sensor NetworksSemantics in Sensor Networks
Semantics in Sensor Networks
Oscar Corcho
 
Cyber Analytics Applications for Data-Intensive Computing
Cyber Analytics Applications for Data-Intensive ComputingCyber Analytics Applications for Data-Intensive Computing
Cyber Analytics Applications for Data-Intensive Computing
Mike Fisk
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Chapter 08 Data Mining Techniques
Chapter 08 Data Mining Techniques Chapter 08 Data Mining Techniques
Chapter 08 Data Mining Techniques
Houw Liong The
 
Spark
SparkSpark
Spark
Srinath Reddy
 
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams   Esteban DonatoEvaluating Classification Algorithms Applied To Data Streams   Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Esteban Donato
 
Tsinghua invited talk_zhou_xing_v2r0
Tsinghua invited talk_zhou_xing_v2r0Tsinghua invited talk_zhou_xing_v2r0
Tsinghua invited talk_zhou_xing_v2r0
Joe Xing
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Interactive Data Analysis for End Users on HN Science Cloud
Interactive Data Analysis for End Users on HN Science CloudInteractive Data Analysis for End Users on HN Science Cloud
Interactive Data Analysis for End Users on HN Science Cloud
Helix Nebula The Science Cloud
 
Network-aware Data Management for High Throughput Flows Akamai, Cambridge, ...
Network-aware Data Management for High Throughput Flows   Akamai, Cambridge, ...Network-aware Data Management for High Throughput Flows   Akamai, Cambridge, ...
Network-aware Data Management for High Throughput Flows Akamai, Cambridge, ...
balmanme
 
Reflections on Almost Two Decades of Research into Stream Processing
Reflections on Almost Two Decades of Research into Stream ProcessingReflections on Almost Two Decades of Research into Stream Processing
Reflections on Almost Two Decades of Research into Stream Processing
Kyumars Sheykh Esmaili
 
Lecture 24
Lecture 24Lecture 24
Lecture 24
Shani729
 
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data StreamsMining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Albert Bifet
 
Distributed Systems: scalability and high availability
Distributed Systems: scalability and high availabilityDistributed Systems: scalability and high availability
Distributed Systems: scalability and high availability
Renato Lucindo
 
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key NoteStream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Emanuele Della Valle
 
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Globus
 
Computation and Knowledge
Computation and KnowledgeComputation and Knowledge
Computation and Knowledge
Ian Foster
 
The Seven Main Challenges of an Early Warning System Architecture
The Seven Main Challenges of an Early Warning System ArchitectureThe Seven Main Challenges of an Early Warning System Architecture
The Seven Main Challenges of an Early Warning System Architecture
streamspotter
 
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
EarthCube
 
Jewei Hans & Kamber Chapter 8
Jewei Hans & Kamber  Chapter 8Jewei Hans & Kamber  Chapter 8
Jewei Hans & Kamber Chapter 8
Houw Liong The
 
Semantics in Sensor Networks
Semantics in Sensor NetworksSemantics in Sensor Networks
Semantics in Sensor Networks
Oscar Corcho
 
Cyber Analytics Applications for Data-Intensive Computing
Cyber Analytics Applications for Data-Intensive ComputingCyber Analytics Applications for Data-Intensive Computing
Cyber Analytics Applications for Data-Intensive Computing
Mike Fisk
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Chapter 08 Data Mining Techniques
Chapter 08 Data Mining Techniques Chapter 08 Data Mining Techniques
Chapter 08 Data Mining Techniques
Houw Liong The
 
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams   Esteban DonatoEvaluating Classification Algorithms Applied To Data Streams   Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Esteban Donato
 
Tsinghua invited talk_zhou_xing_v2r0
Tsinghua invited talk_zhou_xing_v2r0Tsinghua invited talk_zhou_xing_v2r0
Tsinghua invited talk_zhou_xing_v2r0
Joe Xing
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Interactive Data Analysis for End Users on HN Science Cloud
Interactive Data Analysis for End Users on HN Science CloudInteractive Data Analysis for End Users on HN Science Cloud
Interactive Data Analysis for End Users on HN Science Cloud
Helix Nebula The Science Cloud
 
Network-aware Data Management for High Throughput Flows Akamai, Cambridge, ...
Network-aware Data Management for High Throughput Flows   Akamai, Cambridge, ...Network-aware Data Management for High Throughput Flows   Akamai, Cambridge, ...
Network-aware Data Management for High Throughput Flows Akamai, Cambridge, ...
balmanme
 
Reflections on Almost Two Decades of Research into Stream Processing
Reflections on Almost Two Decades of Research into Stream ProcessingReflections on Almost Two Decades of Research into Stream Processing
Reflections on Almost Two Decades of Research into Stream Processing
Kyumars Sheykh Esmaili
 
Lecture 24
Lecture 24Lecture 24
Lecture 24
Shani729
 
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data StreamsMining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Mining Adaptively Frequent Closed Unlabeled Rooted Trees in Data Streams
Albert Bifet
 
Distributed Systems: scalability and high availability
Distributed Systems: scalability and high availabilityDistributed Systems: scalability and high availability
Distributed Systems: scalability and high availability
Renato Lucindo
 
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key NoteStream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Emanuele Della Valle
 
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale...
Globus
 
Computation and Knowledge
Computation and KnowledgeComputation and Knowledge
Computation and Knowledge
Ian Foster
 
The Seven Main Challenges of an Early Warning System Architecture
The Seven Main Challenges of an Early Warning System ArchitectureThe Seven Main Challenges of an Early Warning System Architecture
The Seven Main Challenges of an Early Warning System Architecture
streamspotter
 
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
EarthCube
 
Ad

More from Pier Luca Lanzi (20)

11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi
Pier Luca Lanzi
 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei Videogiochi
Pier Luca Lanzi
 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning Welcome
Pier Luca Lanzi
 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018
Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di apertura
Pier Luca Lanzi
 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018
Pier Luca Lanzi
 
DMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparationDMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparation
Pier Luca Lanzi
 
DMTM Lecture 19 Data exploration
DMTM Lecture 19 Data explorationDMTM Lecture 19 Data exploration
DMTM Lecture 19 Data exploration
Pier Luca Lanzi
 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph mining
Pier Luca Lanzi
 
DMTM Lecture 17 Text mining
DMTM Lecture 17 Text miningDMTM Lecture 17 Text mining
DMTM Lecture 17 Text mining
Pier Luca Lanzi
 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rules
Pier Luca Lanzi
 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluation
Pier Luca Lanzi
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clustering
Pier Luca Lanzi
 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clustering
Pier Luca Lanzi
 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clustering
Pier Luca Lanzi
 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 Clustering
Pier Luca Lanzi
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensembles
Pier Luca Lanzi
 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethods
Pier Luca Lanzi
 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rules
Pier Luca Lanzi
 
11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi
Pier Luca Lanzi
 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei Videogiochi
Pier Luca Lanzi
 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning Welcome
Pier Luca Lanzi
 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018
Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
Pier Luca Lanzi
 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di apertura
Pier Luca Lanzi
 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018
Pier Luca Lanzi
 
DMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparationDMTM Lecture 20 Data preparation
DMTM Lecture 20 Data preparation
Pier Luca Lanzi
 
DMTM Lecture 19 Data exploration
DMTM Lecture 19 Data explorationDMTM Lecture 19 Data exploration
DMTM Lecture 19 Data exploration
Pier Luca Lanzi
 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph mining
Pier Luca Lanzi
 
DMTM Lecture 17 Text mining
DMTM Lecture 17 Text miningDMTM Lecture 17 Text mining
DMTM Lecture 17 Text mining
Pier Luca Lanzi
 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rules
Pier Luca Lanzi
 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluation
Pier Luca Lanzi
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clustering
Pier Luca Lanzi
 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clustering
Pier Luca Lanzi
 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clustering
Pier Luca Lanzi
 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 Clustering
Pier Luca Lanzi
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensembles
Pier Luca Lanzi
 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethods
Pier Luca Lanzi
 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rules
Pier Luca Lanzi
 
Ad

Recently uploaded (20)

Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies