Towards Total Recall in Industrial Anomaly Detectionharmonylab
公開URL:https://openaccess.thecvf.com/content/CVPR2022/papers/Roth_Towards_Total_Recall_in_Industrial_Anomaly_Detection_CVPR_2022_paper.pdf
出典:Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, Peter Gehler: Towards Total Recall in Industrial Anomaly Detection, Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318-14328 (2022)
概要:本論文では位置情報を考慮した特徴量の集合和であるメモリバンクとCoresetによる画像パッチ特徴量の削減を行うPatchCoreアルゴリズムを提案する.結果として、異常検出のベンチマークであるMVTecにおいてAUROC99%以上の精度を出力し,2022年時点でのSoTAを記録した.また,PatchCoreによる特徴量削減により,学習のサンプル数を20%に減らした場合でも以前のSoTAに匹敵する精度となった.