Amazon RDS provides a relational database service that makes it easy to set up, operate, and scale relational databases in the cloud. Key features include automated backups, software patching, monitoring metrics, and the ability to horizontally scale databases using read replicas or sharding. While Amazon RDS is optimized for vertical scaling, SQL Azure provides better support for horizontal scaling through features like elastic database pools. Overall, Amazon RDS offers a managed relational database service that removes the operational burden of self-managing databases.
Introducing Amazon RDS Using Oracle DatabaseJamie Kinney
Amazon RDS allows users to easily deploy and run Oracle databases in the AWS cloud. Key benefits include the ability to quickly provision Oracle software on production-grade hardware without needing to pre-allocate resources, pay only for what is used, and leverage pre-configured Oracle solutions. Oracle licenses can also be portability to AWS. The full Oracle software stack is supported, including databases, middleware, and enterprise applications.
The document provides an overview of running Oracle software on Amazon Web Services (AWS). Key points include:
- AWS allows users to deploy Oracle solutions quickly on production-class hardware without needing to pre-allocate budgets, and pay only for what they use.
- Amazon Machine Images provide pre-configured Oracle solutions for easier deployment.
- Users have full portability to bring Oracle licenses purchased from Oracle to the AWS cloud.
- AWS supports the full Oracle software stack, including databases, middleware, and enterprise applications.
Amazon Aurora is a MySQL-compatible relational database that provides the performance and availability of commercial databases with the simplicity and cost-effectiveness of open source databases. The document compares the performance of Amazon Aurora to MySQL and describes how Aurora achieves high performance through techniques such as doing fewer I/Os, caching results, processing asynchronously, and batching operations together. It also explains how Aurora achieves high availability through a quorum system, peer-to-peer replication to multiple Availability Zones, continuous backup to S3, and fast failover capabilities.
Amazon Redshift는 속도가 빠른 페타바이트 규모의 완전관리형 데이터 웨어하우스로, 간편하고 비용 효율적으로 모든 데이터를 기존 비즈니스 인텔리전스 도구를 사용하여 분석할 수 있게 해줍니다. 이 강연에서는 대량 병렬처리를 가능하게 하는 RedShift의 분산 처리구조를 살펴보고, 다양한 데이터 소스 및 포맷으로 부터의 데이터 통합 및 로드를 위한 모범 사례에 대하여 실습을 통하여 학습할 예정입니다.
연사: 김상필, 아마존 웹서비스 솔루션즈 아키텍트
이 강연에서는 NoSQL 데이터베이스 서비스인 Amazon DynamoDB 서비스를 간단하게 소개하고, 새롭게 발표된 신규 시간 기반 (TTL) 데이터 관리 기능 및 인메모리 캐시 신규 기능 (Amazon DynamoDB Accelerator) 등에 대해 함께 설명해 드릴 예정입니다.
연사: Pranav Nambiar, 아마존 웹서비스 Amazon DynamoDB 총괄 프로덕트 매니저
- The document summarizes updates to Amazon EC2, EC2 Container Service, and AWS Lambda computing services.
- For EC2, new X1 instances with over 100 vCPUs and 2 TB memory were announced for in-memory applications. New T2.nano instances and dedicated hosts were also mentioned.
- For ECS, a new container registry service was highlighted. Scheduler improvements and expanded Docker configuration options were noted.
- For Lambda, added support for Python, longer function durations, scheduled functions, and versioning were summarized.
AWS는 고객의 기존 데이터베이스를 쉽게 클라우드로 이전할 수 있도록 데이터베이스 전환을 돕는 AWS Database Migration Service와 AWS Schema Conversion Tool을 제공합니다. 이 강연에서는 이 도구들을 활용하여 오라클 데이터베이스를 Amazon Aurora 데이터베이스로 이전하는 방법에 대하여 실습을 통하여 학습할 예정입니다.
연사: John Winford, 아마존 웹서비스 시니어 테크니컬 매니저
김상필, 아마존 웹서비스 솔루션즈 아키텍트
The document provides an overview of AWS Database Migration Service (AWS DMS). It explains that AWS DMS allows users to easily and securely migrate or replicate databases to AWS. It describes how to use AWS DMS by creating a replication instance, specifying source and target endpoints, and then creating a migration task to transfer data from the source to target. Key aspects of the replication instance, endpoints, and tasks are also defined.
Migrating Your Databases to AWS Deep Dive on Amazon RDS and AWSKristana Kane
This document provides an overview of migrating databases to AWS using Amazon RDS and AWS Database Migration Service (DMS). It discusses how AWS RDS offers scalable, managed relational databases, the different database engines supported by RDS, and key features like security, monitoring, high availability and scaling. It then covers how AWS DMS can be used to migrate databases to AWS with no downtime by continuously replicating and migrating data. Finally, it shares examples of how customers have used RDS and DMS for heterogeneous, homogeneous, large-scale and split migrations.
RDS provides a managed relational database service that allows customers to focus on applications rather than database administration. New features include increased storage and IOPS limits, HIPAA eligibility for some databases, and support for MariaDB. Amazon Aurora is a MySQL-compatible database designed for high performance, availability, and scalability. It uses 6 copies of data across 3 availability zones and provides up to 64TB of storage. The Database Migration Service allows migrating databases from on-premises or other platforms to AWS databases while keeping applications running.
An introduction to Amazon RDS for SQL Server as well as how you can lower your costs of running SQL Server in AWS RDS, and Migrating your data into and out of Amazon RDS for SQL Server.
Scaling on AWS for the First 10 Million Users at Websummit DublinIan Massingham
In this talk from the Dublin Websummit 2014 AWS Technical Evangelist Ian Massingham discusses the techniques that AWS customers can use to create highly scalable infrastructure to support the operation of large scale applications on the AWS cloud.
Includes a walk-through of how you can evolve your architecture as your application becomes more popular and you need to scale up your infrastructure to support increased demand.
AWS Public Cloud solution for ABC CorporationManpreet Sidhu
This document summarizes AWS solutions that could be used by ABC Corporation. It describes core AWS functionality including compute, storage, databases, and networking services. The document then lists specific AWS services that could be used for the solution, including EC2, EBS, S3, RDS, CloudFront, Elasticache, Route 53, Elastic Load Balancer, and Auto Scaling. It compares an on-premises infrastructure to one running on AWS and describes how AWS could provide improvements in areas like performance, disaster recovery, high availability, scalability, and security.
클라우드에서 Database를 백업하고 복구하는 방법에 대해 설명드립니다. AWS Backup을 사용하여 전체백업/복구 부터 PITR(Point in Time Recovery)백업, 그리고 멀티 어카운트, 멀티 리전등 다양한 데이터 보호 방법을 소개합니다(데모 포함). 또한 self-managed DB 의 데이터 저장소로 Amazon FSx for NetApp ONTAP 스토리지 서비스를 사용할 경우 얼마나 신속하게 데이터를 복구/복제 할수 있는지 살펴 봅니다.
기업은 이벤트나 신제품 출시 등으로 예기치 못한 트래픽 급증 시 데이터베이스 과부하, 서비스 지연 및 중단 등의 문제를 겪곤 합니다. Aurora 오토스케일링은 프로비저닝 시간으로 인해 실시간 대응이 어렵고, 트래픽 대응을 위한 과잉 프로비저닝이 발생합니다. 이러한 문제를 해결하기 위해 프로비저닝된 Amazon Aurora 클러스터와 Aurora Serverless v2(ASV2) 인스턴스를 결합하는 Amazon Aurora 혼합 구성 클러스터 아키텍처와 고해상도 지표를 기반으로 하는 커스텀 오토스케일링 솔루션을 소개합니다.
Amazon Aurora 클러스터를 초당 수백만 건의 쓰기 트랜잭션으로 확장하고 페타바이트 규모의 데이터를 관리할 수 있으며, 사용자 지정 애플리케이션 로직을 생성하거나 여러 데이터베이스를 관리할 필요 없이 Aurora에서 관계형 데이터베이스 워크로드를 단일 Aurora 라이터 인스턴스의 한도 이상으로 확장할 수 있는 Amazon Aurora Limitless Database를 소개합니다.
Amazon Aurora MySQL 호환 버전 2(MySQL 5.7 호환성 지원)는 2024년 10월 31일에 표준 지원이 종료될 예정입니다. 이로 인해 Aurora MySQL의 메이저 버전 업그레이드를 검토하고 계시다면, Amazon Blue/Green Deployments는 운영 환경에 영향을 주지 않고 메이저 버전 업그레이드를 할 수 있는 최적의 솔루션입니다. 본 세션에서는 Blue/Green Deployments를 통한 Aurora MySQL의 메이저 버전 업그레이드를 실습합니다.
Amazon DocumentDB(MongoDB와 호환됨)는 빠르고 안정적이며 완전 관리형 데이터베이스 서비스입니다. Amazon DocumentDB를 사용하면 클라우드에서 MongoDB 호환 데이터베이스를 쉽게 설치, 운영 및 규모를 조정할 수 있습니다. Amazon DocumentDB를 사용하면 MongoDB에서 사용하는 것과 동일한 애플리케이션 코드를 실행하고 동일한 드라이버와 도구를 사용하는 것을 실습합니다.
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...Amazon Web Services Korea
Database Migration Service(DMS)는 RDBMS 이외에도 다양한 데이터베이스 이관을 지원합니다. 실제 고객사 사례를 통해 DMS가 데이터베이스 이관, 통합, 분리를 수행하는 데 어떻게 활용되는지 알아보고, 동시에 데이터 분석을 위한 데이터 수집(Data Ingest)에도 어떤 역할을 하는지 살펴보겠습니다.
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Web Services Korea
Amazon ElastiCache는 Redis 및 MemCached와 호환되는 완전관리형 서비스로서 현대적 애플리케이션의 성능을 최적의 비용으로 실시간으로 개선해 줍니다. ElastiCache의 Best Practice를 통해 최적의 성능과 서비스 최적화 방법에 대해 알아봅니다.
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Amazon Web Services Korea
ccAmazon Aurora 데이터베이스는 클라우드용으로 구축된 관계형 데이터베이스입니다. Aurora는 상용 데이터베이스의 성능과 가용성, 그리고 오픈소스 데이터베이스의 단순성과 비용 효율성을 모두 제공합니다. 이 세션은 Aurora의 고급 사용자들을 위한 세션으로써 Aurora의 내부 구조와 성능 최적화에 대해 알아봅니다.
Ad
More Related Content
Similar to AWS 마이그레이션 서비스 - 김일호 :: 2015 리인벤트 리캡 게이밍 (7)
AWS는 고객의 기존 데이터베이스를 쉽게 클라우드로 이전할 수 있도록 데이터베이스 전환을 돕는 AWS Database Migration Service와 AWS Schema Conversion Tool을 제공합니다. 이 강연에서는 이 도구들을 활용하여 오라클 데이터베이스를 Amazon Aurora 데이터베이스로 이전하는 방법에 대하여 실습을 통하여 학습할 예정입니다.
연사: John Winford, 아마존 웹서비스 시니어 테크니컬 매니저
김상필, 아마존 웹서비스 솔루션즈 아키텍트
The document provides an overview of AWS Database Migration Service (AWS DMS). It explains that AWS DMS allows users to easily and securely migrate or replicate databases to AWS. It describes how to use AWS DMS by creating a replication instance, specifying source and target endpoints, and then creating a migration task to transfer data from the source to target. Key aspects of the replication instance, endpoints, and tasks are also defined.
Migrating Your Databases to AWS Deep Dive on Amazon RDS and AWSKristana Kane
This document provides an overview of migrating databases to AWS using Amazon RDS and AWS Database Migration Service (DMS). It discusses how AWS RDS offers scalable, managed relational databases, the different database engines supported by RDS, and key features like security, monitoring, high availability and scaling. It then covers how AWS DMS can be used to migrate databases to AWS with no downtime by continuously replicating and migrating data. Finally, it shares examples of how customers have used RDS and DMS for heterogeneous, homogeneous, large-scale and split migrations.
RDS provides a managed relational database service that allows customers to focus on applications rather than database administration. New features include increased storage and IOPS limits, HIPAA eligibility for some databases, and support for MariaDB. Amazon Aurora is a MySQL-compatible database designed for high performance, availability, and scalability. It uses 6 copies of data across 3 availability zones and provides up to 64TB of storage. The Database Migration Service allows migrating databases from on-premises or other platforms to AWS databases while keeping applications running.
An introduction to Amazon RDS for SQL Server as well as how you can lower your costs of running SQL Server in AWS RDS, and Migrating your data into and out of Amazon RDS for SQL Server.
Scaling on AWS for the First 10 Million Users at Websummit DublinIan Massingham
In this talk from the Dublin Websummit 2014 AWS Technical Evangelist Ian Massingham discusses the techniques that AWS customers can use to create highly scalable infrastructure to support the operation of large scale applications on the AWS cloud.
Includes a walk-through of how you can evolve your architecture as your application becomes more popular and you need to scale up your infrastructure to support increased demand.
AWS Public Cloud solution for ABC CorporationManpreet Sidhu
This document summarizes AWS solutions that could be used by ABC Corporation. It describes core AWS functionality including compute, storage, databases, and networking services. The document then lists specific AWS services that could be used for the solution, including EC2, EBS, S3, RDS, CloudFront, Elasticache, Route 53, Elastic Load Balancer, and Auto Scaling. It compares an on-premises infrastructure to one running on AWS and describes how AWS could provide improvements in areas like performance, disaster recovery, high availability, scalability, and security.
클라우드에서 Database를 백업하고 복구하는 방법에 대해 설명드립니다. AWS Backup을 사용하여 전체백업/복구 부터 PITR(Point in Time Recovery)백업, 그리고 멀티 어카운트, 멀티 리전등 다양한 데이터 보호 방법을 소개합니다(데모 포함). 또한 self-managed DB 의 데이터 저장소로 Amazon FSx for NetApp ONTAP 스토리지 서비스를 사용할 경우 얼마나 신속하게 데이터를 복구/복제 할수 있는지 살펴 봅니다.
기업은 이벤트나 신제품 출시 등으로 예기치 못한 트래픽 급증 시 데이터베이스 과부하, 서비스 지연 및 중단 등의 문제를 겪곤 합니다. Aurora 오토스케일링은 프로비저닝 시간으로 인해 실시간 대응이 어렵고, 트래픽 대응을 위한 과잉 프로비저닝이 발생합니다. 이러한 문제를 해결하기 위해 프로비저닝된 Amazon Aurora 클러스터와 Aurora Serverless v2(ASV2) 인스턴스를 결합하는 Amazon Aurora 혼합 구성 클러스터 아키텍처와 고해상도 지표를 기반으로 하는 커스텀 오토스케일링 솔루션을 소개합니다.
Amazon Aurora 클러스터를 초당 수백만 건의 쓰기 트랜잭션으로 확장하고 페타바이트 규모의 데이터를 관리할 수 있으며, 사용자 지정 애플리케이션 로직을 생성하거나 여러 데이터베이스를 관리할 필요 없이 Aurora에서 관계형 데이터베이스 워크로드를 단일 Aurora 라이터 인스턴스의 한도 이상으로 확장할 수 있는 Amazon Aurora Limitless Database를 소개합니다.
Amazon Aurora MySQL 호환 버전 2(MySQL 5.7 호환성 지원)는 2024년 10월 31일에 표준 지원이 종료될 예정입니다. 이로 인해 Aurora MySQL의 메이저 버전 업그레이드를 검토하고 계시다면, Amazon Blue/Green Deployments는 운영 환경에 영향을 주지 않고 메이저 버전 업그레이드를 할 수 있는 최적의 솔루션입니다. 본 세션에서는 Blue/Green Deployments를 통한 Aurora MySQL의 메이저 버전 업그레이드를 실습합니다.
Amazon DocumentDB(MongoDB와 호환됨)는 빠르고 안정적이며 완전 관리형 데이터베이스 서비스입니다. Amazon DocumentDB를 사용하면 클라우드에서 MongoDB 호환 데이터베이스를 쉽게 설치, 운영 및 규모를 조정할 수 있습니다. Amazon DocumentDB를 사용하면 MongoDB에서 사용하는 것과 동일한 애플리케이션 코드를 실행하고 동일한 드라이버와 도구를 사용하는 것을 실습합니다.
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...Amazon Web Services Korea
Database Migration Service(DMS)는 RDBMS 이외에도 다양한 데이터베이스 이관을 지원합니다. 실제 고객사 사례를 통해 DMS가 데이터베이스 이관, 통합, 분리를 수행하는 데 어떻게 활용되는지 알아보고, 동시에 데이터 분석을 위한 데이터 수집(Data Ingest)에도 어떤 역할을 하는지 살펴보겠습니다.
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Web Services Korea
Amazon ElastiCache는 Redis 및 MemCached와 호환되는 완전관리형 서비스로서 현대적 애플리케이션의 성능을 최적의 비용으로 실시간으로 개선해 줍니다. ElastiCache의 Best Practice를 통해 최적의 성능과 서비스 최적화 방법에 대해 알아봅니다.
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Amazon Web Services Korea
ccAmazon Aurora 데이터베이스는 클라우드용으로 구축된 관계형 데이터베이스입니다. Aurora는 상용 데이터베이스의 성능과 가용성, 그리고 오픈소스 데이터베이스의 단순성과 비용 효율성을 모두 제공합니다. 이 세션은 Aurora의 고급 사용자들을 위한 세션으로써 Aurora의 내부 구조와 성능 최적화에 대해 알아봅니다.
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...Amazon Web Services Korea
오랫동안 관계형 데이터베이스가 가장 많이 사용되었으며 거의 모든 애플리케이션에서 널리 사용되었습니다. 따라서 애플리케이션 아키텍처에서 데이터베이스를 선택하기가 더 쉬웠지만, 구축할 수 있는 애플리케이션의 유형이 제한적이었습니다. 관계형 데이터베이스는 스위스 군용 칼과 같아서 많은 일을 할 수 있지만 특정 업무에는 완벽하게 적합하지는 않습니다. 클라우드 컴퓨팅의 등장으로 경제적인 방식으로 더욱 탄력적이고 확장 가능한 애플리케이션을 구축할 수 있게 되면서 기술적으로 가능한 일이 달라졌습니다. 이러한 변화는 전용 데이터베이스의 부상으로 이어졌습니다. 개발자는 더 이상 기본 관계형 데이터베이스를 사용할 필요가 없습니다. 개발자는 애플리케이션의 요구 사항을 신중하게 고려하고 이러한 요구 사항에 맞는 데이터베이스를 선택할 수 있습니다.
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Amazon Web Services Korea
실시간 분석은 AWS 고객의 사용 사례가 점점 늘어나고 있습니다. 이 세션에 참여하여 스트리밍 데이터 기술이 어떻게 데이터를 즉시 분석하고, 시스템 간에 데이터를 실시간으로 이동하고, 실행 가능한 통찰력을 더 빠르게 얻을 수 있는지 알아보십시오. 일반적인 스트리밍 데이터 사용 사례, 비즈니스에서 실시간 분석을 쉽게 활성화하는 단계, AWS가 Amazon Kinesis와 같은 AWS 스트리밍 데이터 서비스를 사용하도록 지원하는 방법을 다룹니다.
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon Web Services Korea
Amazon EMR은 Apache Spark, Hive, Presto, Trino, HBase 및 Flink와 같은 오픈 소스 프레임워크를 사용하여 분석 애플리케이션을 쉽게 실행할 수 있는 관리형 서비스를 제공합니다. Spark 및 Presto용 Amazon EMR 런타임에는 오픈 소스 Apache Spark 및 Presto에 비해 두 배 이상의 성능 향상을 제공하는 최적화 기능이 포함되어 있습니다. Amazon EMR Serverless는 Amazon EMR의 새로운 배포 옵션이지만 데이터 엔지니어와 분석가는 클라우드에서 페타바이트 규모의 데이터 분석을 쉽고 비용 효율적으로 실행할 수 있습니다. 이 세션에 참여하여 개념, 설계 패턴, 라이브 데모를 사용하여 Amazon EMR/EMR 서버리스를 살펴보고 Spark 및 Hive 워크로드, Amazon EMR 스튜디오 및 Amazon SageMaker Studio와의 Amazon EMR 통합을 실행하는 것이 얼마나 쉬운지 알아보십시오.
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon Web Services Korea
로그 및 지표 데이터를 쉽게 가져오고, OpenSearch 검색 API를 사용하고, OpenSearch 대시보드를 사용하여 시각화를 구축하는 등 Amazon OpenSearch의 새로운 기능과 기능에 대해 자세히 알아보십시오. 애플리케이션 문제를 디버깅할 수 있는 OpenSearch의 Observability 기능에 대해 알아보세요. Amazon OpenSearch Service를 통해 인프라 관리에 대해 걱정하지 않고 검색 또는 모니터링 문제에 집중할 수 있는 방법을 알아보십시오.
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Amazon Web Services Korea
데이터 거버넌스는 전체 프로세스에서 데이터를 관리하여 데이터의 정확성과 완전성을 보장하고 필요한 사람들이 데이터에 액세스할 수 있도록 하는 프로세스입니다. 이 세션에 참여하여 AWS가 어떻게 분석 서비스 전반에서 데이터 준비 및 통합부터 데이터 액세스, 데이터 품질 및 메타데이터 관리에 이르기까지 포괄적인 데이터 거버넌스를 제공하는지 알아보십시오. AWS에서의 스트리밍에 대해 자세히 알아보십시오.
Quantum Computing Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
What is Model Context Protocol(MCP) - The new technology for communication bw...Vishnu Singh Chundawat
The MCP (Model Context Protocol) is a framework designed to manage context and interaction within complex systems. This SlideShare presentation will provide a detailed overview of the MCP Model, its applications, and how it plays a crucial role in improving communication and decision-making in distributed systems. We will explore the key concepts behind the protocol, including the importance of context, data management, and how this model enhances system adaptability and responsiveness. Ideal for software developers, system architects, and IT professionals, this presentation will offer valuable insights into how the MCP Model can streamline workflows, improve efficiency, and create more intuitive systems for a wide range of use cases.
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPathCommunity
Join this UiPath Community Berlin meetup to explore the Orchestrator API, Swagger interface, and the Test Manager API. Learn how to leverage these tools to streamline automation, enhance testing, and integrate more efficiently with UiPath. Perfect for developers, testers, and automation enthusiasts!
📕 Agenda
Welcome & Introductions
Orchestrator API Overview
Exploring the Swagger Interface
Test Manager API Highlights
Streamlining Automation & Testing with APIs (Demo)
Q&A and Open Discussion
Perfect for developers, testers, and automation enthusiasts!
👉 Join our UiPath Community Berlin chapter: https://community.uipath.com/berlin/
This session streamed live on April 29, 2025, 18:00 CET.
Check out all our upcoming UiPath Community sessions at https://community.uipath.com/events/.
Artificial Intelligence is providing benefits in many areas of work within the heritage sector, from image analysis, to ideas generation, and new research tools. However, it is more critical than ever for people, with analogue intelligence, to ensure the integrity and ethical use of AI. Including real people can improve the use of AI by identifying potential biases, cross-checking results, refining workflows, and providing contextual relevance to AI-driven results.
News about the impact of AI often paints a rosy picture. In practice, there are many potential pitfalls. This presentation discusses these issues and looks at the role of analogue intelligence and analogue interfaces in providing the best results to our audiences. How do we deal with factually incorrect results? How do we get content generated that better reflects the diversity of our communities? What roles are there for physical, in-person experiences in the digital world?
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfAbi john
Analyze the growth of meme coins from mere online jokes to potential assets in the digital economy. Explore the community, culture, and utility as they elevate themselves to a new era in cryptocurrency.
Role of Data Annotation Services in AI-Powered ManufacturingAndrew Leo
From predictive maintenance to robotic automation, AI is driving the future of manufacturing. But without high-quality annotated data, even the smartest models fall short.
Discover how data annotation services are powering accuracy, safety, and efficiency in AI-driven manufacturing systems.
Precision in data labeling = Precision on the production floor.
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxshyamraj55
We’re bringing the TDX energy to our community with 2 power-packed sessions:
🛠️ Workshop: MuleSoft for Agentforce
Explore the new version of our hands-on workshop featuring the latest Topic Center and API Catalog updates.
📄 Talk: Power Up Document Processing
Dive into smart automation with MuleSoft IDP, NLP, and Einstein AI for intelligent document workflows.
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxAnoop Ashok
In today's fast-paced retail environment, efficiency is key. Every minute counts, and every penny matters. One tool that can significantly boost your store's efficiency is a well-executed planogram. These visual merchandising blueprints not only enhance store layouts but also save time and money in the process.
Spark is a powerhouse for large datasets, but when it comes to smaller data workloads, its overhead can sometimes slow things down. What if you could achieve high performance and efficiency without the need for Spark?
At S&P Global Commodity Insights, having a complete view of global energy and commodities markets enables customers to make data-driven decisions with confidence and create long-term, sustainable value. 🌍
Explore delta-rs + CDC and how these open-source innovations power lightweight, high-performance data applications beyond Spark! 🚀
Big Data Analytics Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul
Artificial intelligence is changing how businesses operate. Companies are using AI agents to automate tasks, reduce time spent on repetitive work, and focus more on high-value activities. Noah Loul, an AI strategist and entrepreneur, has helped dozens of companies streamline their operations using smart automation. He believes AI agents aren't just tools—they're workers that take on repeatable tasks so your human team can focus on what matters. If you want to reduce time waste and increase output, AI agents are the next move.
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxJustin Reock
Building 10x Organizations with Modern Productivity Metrics
10x developers may be a myth, but 10x organizations are very real, as proven by the influential study performed in the 1980s, ‘The Coding War Games.’
Right now, here in early 2025, we seem to be experiencing YAPP (Yet Another Productivity Philosophy), and that philosophy is converging on developer experience. It seems that with every new method we invent for the delivery of products, whether physical or virtual, we reinvent productivity philosophies to go alongside them.
But which of these approaches actually work? DORA? SPACE? DevEx? What should we invest in and create urgency behind today, so that we don’t find ourselves having the same discussion again in a decade?
Semantic Cultivators : The Critical Future Role to Enable AIartmondano
By 2026, AI agents will consume 10x more enterprise data than humans, but with none of the contextual understanding that prevents catastrophic misinterpretations.
HCL Nomad Web – Best Practices and Managing Multiuser Environmentspanagenda
Webinar Recording: https://www.panagenda.com/webinars/hcl-nomad-web-best-practices-and-managing-multiuser-environments/
HCL Nomad Web is heralded as the next generation of the HCL Notes client, offering numerous advantages such as eliminating the need for packaging, distribution, and installation. Nomad Web client upgrades will be installed “automatically” in the background. This significantly reduces the administrative footprint compared to traditional HCL Notes clients. However, troubleshooting issues in Nomad Web present unique challenges compared to the Notes client.
Join Christoph and Marc as they demonstrate how to simplify the troubleshooting process in HCL Nomad Web, ensuring a smoother and more efficient user experience.
In this webinar, we will explore effective strategies for diagnosing and resolving common problems in HCL Nomad Web, including
- Accessing the console
- Locating and interpreting log files
- Accessing the data folder within the browser’s cache (using OPFS)
- Understand the difference between single- and multi-user scenarios
- Utilizing Client Clocking
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Impelsys Inc.
Impelsys provided a robust testing solution, leveraging a risk-based and requirement-mapped approach to validate ICU Connect and CritiXpert. A well-defined test suite was developed to assess data communication, clinical data collection, transformation, and visualization across integrated devices.
2. What to Expect from the Session
• Learn about migrating databases with minimal downtime to
Amazon RDS, Amazon Redshift and Amazon Aurora
• Discuss database migrations to same and different engines
• Learn about the converting schemas and stored code from Oracle
and SQL Server to MySQL and Aurora
• One more thing~
3. Embracing the cloud demands a cloud data
strategy
• How will my on-premises data migrate to the cloud?
• How can I make it transparent to my customers?
• Afterwards, how will on-premises and cloud data interact?
• How can I integrate my data assets within AWS?
• Can I get help moving off of commercial databases?
4. Historically, Migration = Cost, Time
• Commercial Migration / Replication software
• Complex to setup and manage
• Legacy schema objects, PL/SQL or T-SQL code
• Application downtime
6. Purposes of data migration
One-time data migration
Between on premises and AWS
Between Amazon EC2 and Amazo
n RDS
Ongoing Replication
Replicate on premises to AWS
Replicate AWS to on premises
Replicate OLTP to BI
Replicate for query offloading
7. Ways to migrate data
Bulk Load
AWS Database Migration Service
Oracle Import/Export
Oracle Data Pump Network Mode
Oracle SQL*Loader
Oracle Materialized Views
CTAS / INSERT over dblink
Ongoing Replication
AWS Database Migration Service
Oracle Data Pump Network Mode
Oracle Materialized Views
Oracle GoldenGate
8. High-speed database migration prior to AWS DMS
EC2
Instance
Linux
Host
On-Premises AWS Availability Zone
Oracle DB
RDS
Oracle
Tsunami Tsunami
DATA_PUMP_DIR
500GB
175GB
~2.5 hours~2.5 hours
Total Time
~7 hours
~3.5 hours~4 hours
9. Start your first migration in 10 minutes or less
Keep your apps running during the migration
Replicate within, to or from Amazon EC2 or RDS
Move data to the same or different database engine
Sign up for preview at aws.amazon.com/dms
AWS
Database Migration
Service
11. Customer
Premises
Application Users
AWS
Internet
VPN
• Start a replication instance
• Connect to source and target
databases
• Select tables, schemas, or databases
Let AWS Database Migration Service
create tables, load data, and keep
them in sync
Switch applications over to the target
at your convenience
Keep your apps running during the migration
AWS
Database Migration Service
12. After migration, use for replication and data
integration
• Replicate data in on-premises databases to AWS
• Replicate OLTP data to Amazon Redshift
• Integrate tables from third-party software into your reporting
or core OLTP systems
• Hybrid cloud is a stepping stone in migration to AWS
13. Cost-effective and no upfront costs
• T2 pricing starts at $0.018 per Hour for T2.micro
• C4 pricing starts at $0.154 per Hour for C4.large
• 50GB GP2 storage included with T2 instances
• 100GB GP2 storage included with C4 instances
•
• Data transfer inbound and within AZ is free
• Data transfer across AZs starts at $0.01 per GB
Swap
Logs
Cache
16. Migrate off Oracle and SQL Server
Move your tables, views, stored procedures and DM
L to MySQL, MariaDB, and Amazon Aurora
Know exactly where manual edits are needed
Download at aws.amazon.com/dms
AWS
Schema Conversion
Tool
17. Get help with converting tables, views, and code
Schemas
Tables
Indexes
Views
Packages
Stored Procedures
Functions
Triggers
Sequences
User Defined Types
Synonyms
21. RAC on Amazon EC2 would be useful
• Test / dev / non-prod; allow testing to cover RAC-related regression cases
• Scale out and back elastically; a good match for the cloud
• Scale beyond the largest instances
• High-RTO redundancy at the host/instance level; App continuity for near zero downtime
• Test scaling limits; a given workload scales only to n nodes on RAC
• Some applications “require” RAC
• Some customers don’t want to re-engineer everything just to move to AWS
• Customers want it!
23. Why no RAC on EC2?
EBS Vol
ume
Shared Storage
EC2
Instance
X
28. Sign Up for AWS Database Migration Service
• Sign up for AWS Database Migration Service Preview now:
• aws.amazon.com/dms
• Download the AWS Schema Conversion Tool:
• aws.amazon.com/dms
#3: Introduce self and Sergei (Senior Product Manager)
Migration from on-premises and traditionally hosted databases to AWS managed database services…
Not only how to migrate between same engines, but also between different, like…
But before you can migrate data anywhere, you need a schema; tables and objects into which to load the data.
We’ll talk about how you can convert database objects, in order to support moving between engines.
#4: These days, we’re hearing a lot of customers tell us they want to move their on-premises applications into the cloud.
But moving applications is simpler than moving the databases they depend on.
Applications are usually stateless, and can be moved fairly easily using a lift and shift approach.
(CLICK) But databases are stateful, and they require more care. To move databases to AWS, requires a data migration strategy.
(CLICK) And when it comes to designing those strategies, customers want to be able to do it with the least possible inconvenience and visibility to their users.
(CLICK) And once an application is migrated to AWS, it’s not the end of the story. Often customers have several applications, some in the cloud and some on premises or in hosted environments.Customers need to be able to synchronize their data between on-premises and cloud-based applications.
(CLICK) And the same goes for applications within AWS. Those applications often share data, and customers want to be able to synchronize and replicate data between the various databases they maintain within AWS.
(CLICK) And one other thing: customers moving applications to the cloud, often see it as an opportunity to break free from commercial databases, which tend to have a heavy licensing burden. We often hear customers asking us for a way to convert their commercial databases into AWS solutions, such as RDS MySQL, Postgres, Aurora and Redshift.
#6: Announcing preview of AWS DMS
Explain what it basically is: A managed hosted data replication service engineered to support graceful migration from legacy database systems into the next generation managed databases at AWS.
#7: There are multiple reasons why you’d want to migrate your data.
Read-only replication: reporting, read scaling
Read/write replication: multi-master
#8: There is a multitude of approaches for migrating your data to AWS.
Choose the method based on Data set size, Network Connectivity (access, latency, and bandwidth), ability to sustain downtime for source DB, Need for continuous data synchronization.
If you can take or day or two of downtime, and you don’t have to do the migration process several times, you want to do a Bulk Load.
If you need to minimize downtime, or when your dataset is large and you can’t shut down access to the source while you are migrating your data, you want to consider Ongoing Replication.
#9: In the past we recommended the following high-performance technique for moving large databases.
Use DataPump and export files in parallel.
Use a box that has multiple disks, to parallelize IO
Compression Makes 500 GB to 175 GB
Time to export 500GB is ~2.5 hours
Transport compressed files to EC2 instance using UDP and the Tsunami server.
Install Tsunami on both the source data host and the target EC2 host
Using UDP you can achieve higher rates for transferring files that using TCP
Start Upload when first files from DataPump become available.
Upload in Parallel. No need to wait till all 18 files are done to start upload
Time to upload 175GB is ~2.5 hours
Step 3.
Transfer Files to Amazon RDS DB instance
Amazon RDS DB instance has an externally accessible Oracle Directory Object DATA_PUMP_DIR
Use UTL_FILE. to move data files to Amazon RDS DATA_PUMP_DIR
BEGIN perl_global.fh := utl_file.fopen(:dirname, :fname, 'wb', :chunk); END;
BEGIN utl_file.put_raw(perl_global.fh, :data, true); END;
BEGIN utl_file.fclose(perl_global.fh); END;
Transfer Files as They Are Received, No need to wait till all 18 files are received in the EC2 instance. Start transfer to RDS instance as soon as the first file is received.
Total time to Transfer Files to RDS ~3.5Hours
Step 4.
Import data into the Amazon RDS instance
• Import from within Amazon RDS instance using DBMS_DATAPUMP package
• Submit a job using PL/SQL script
Total Time to Import Data into Amazon RDS: ~4hours
But because we do everything staged and have 18 distinct files, the total duration is ~7hours.
Background
-------------------
Open port 46224 for Tsunami communication
Tsunami UDP Protocol: A fast user-space file transfer protocol that uses TCP control and UDP data for transfer over very high speed long distance networks (≥ 1 Gbps and even 10 GE), designed to provide more throughput than possible with TCP over the same networks.
Tsunami Servers: http://sourceforge.net/projects/tsunami-udp/files/latest/download?_test=goal
Optimize the Data Pump Export
• Reduce the data set to optimal size, avoid indexes
• Use compression and parallel processing
• Use multiple disks with independent I/O
Optimize Data Upload
• Use Tsunami for UDP-based file transfer
• Use large Amazon EC2 instance with SSD or PIOPS volume
• Use multiple disks with independent I/O
• You could use multiple Amazon EC2 instances for parallel upload
Optimize Data File Upload to RDS
• Use the largest Amazon RDS DB instance possible during the import process
• Avoid using Amazon RDS DB instance for any other load during this time
• Provision enough storage in the Amazon RDS DB instance for the uploaded files and imported data
#10:
* Like all AWS services, it is easy and straightforward to get started. You can get started with your first migration task in 10 min or less.
You simply connect it to your source and target databases, and it copies the data over, and begins replicating changes from source to target.
*That means that you can keep your apps running during the migration, then switch over at a time that is convenient for your business.
* In addition to one-time database migration, you can also use DMS for ongoing data replication. Replicate within, to or from AWS EC2 or RDS databases
For rinstance, After migrating your database, use the AWS Database Migration Service to replicate data into your Redshift data warehouses, cross-region to other RDS instances, or back to on-premises
*Again- it is heterogeneous ~. With DMS, you can move data between engines. Supports Oracle, Microsoft SQL Server, MySQL, PostgreSQL, MariaDB, Amazon Aurora, Amazon Redshift
* If you would like to sign up for the preview of DMS, go to…
#11: Let’s take a look at how to use the database migr. Service…
From the landing page, just click “get started”.
That will take you to page that describes how DMS works to migrate your data; how you connect it to a source database and target database, then define replication tasks to move the data.
#12: Using the AWS Database Migration Service to migrate data to AWS is simple.
(CLICK) Start by spinning up a DMS instance in your AWS environment
(CLICK) Next, from within DMS, connect to both your source and target databases
(CLICK) Choose what data you want to migrate. DMS lets you migrate tables, schemas, or whole databases
Then sit back and let DMS do the rest. (CLICK) It creates the tables, loads the data, and best of all, keeps them synchronized for as long as you need
That replication capability, which keeps the source and target data in sync, allows customers to switch applications (CLICK) over to point to the AWS database at their leisure.DMS eliminates the need for high-stakes extended outages to migrate production data into the cloud. DMS provides a graceful switchover capability.
#13: But DMSis for much more than just migration.
(CLICK) DMSenables customers to adopt a hybrid approach to the cloud, maintaining some applications on premises, and others within AWS.
There are dozens of compelling use cases for a hybrid cloud approach using DMS.
(CLICK) for customers just getting their feet wet, AWS is a great place to keep up-to-date read-only copies of on-premises data for reporting purposes.AWS services like Aurora, Redshift and RDS are great platforms for this.
(CLICK) With DMS, you can maintain copies of critical business data from third-party or ERP applications, like employee data from Peoplesoft, or financial data from Oracle E-Business Suite, in the databases used by the other applications in your enterprise. In this way, it enables application integration in the enterprise.
(CLICK) Another nice thing about the hybrid cloud approach is that it lets customers become familiar with AWS technology and services gradually.DMS enables that. Moving to the cloud is much simpler if you have a way to link the data and applications that have moved to AWS with those that haven’t.
#14: With the AWS Database Migration Service you pay for the migration instance that moves your data from your source database to your target database.(CLICK) (Actually talk to points) Each database migration instance includes storage sufficient to support the needs of the replication engine, such as swap space, logs, and cache. (CLICK) (actually talk to points) Inbound data transfer is free. (CLICK) Additional charges only apply (CLICK) if you decide to allocate additional storage for data migration logs or when you replicate your data to a database in another region or on-premises.
AWS Database Migration Service currently supports the T2 and C4 instance classes. T2 instances are low-cost standard instances designed to provide a baseline level of CPU performance with the ability to burst above the baseline. They are suitable for developing, configuring and testing your database migration process, and for periodic data migration tasks that can benefit from the CPU burst capability.
C4 instances are designed to deliver the highest level of processor performance and achieve significantly higher packet per second (PPS) performance, lower network jitter, and lower network latency. You should use C4 instances if you are migrating large databases and are looking to minimize the migration time.
#15: Elaborate on heterogeneous use cases
Database engine migration – cost savings; Move to full managed and scalable cloud-native – Ent class like Aurora
Low-cost reporting, analytics and BI for systems on commercial OLTP (MySQL Postgres Aurora)
Data integration – customer accounts, data like that, can be presented no only on the master platform, but also in applications that are based on non-commercial
But you can’t just pick up an Oracle table and put it down in MySQL. You can’t run an Oracle PL/SQL package on Postgres.
To migrate or replicate data between engines, you need a way to convert the schema, to build a set of tables and objects on the destination that is native to that engine.
We’ve been working on that problem.
Introduce Sergei
#17: The AWS Schema Conversion Tool is a development environment that you download to your desktop and use to save time when migrating from Oracle and SQL Server to next-generation cloud databases such as Amazon Aurora.
You can convert database objects such as tables, indexes, views, stored procedures, and Data Manipulation Language (DML) statements like SELECT, INSERT, DELETE, UPDATE.