- The document discusses data analysis methods for analyzing tactics in team sports.
- It covers collecting data through sensors and cameras, as well as different approaches to data analysis including rule-based and machine learning methods.
- Specifically, it proposes combining experience/theory-based approaches with machine learning to automatically classify attacking and defensive tactics, predict player trajectories based on who they are watching, and evaluate players and teams based on movement predictions.
- The document discusses data analysis methods for analyzing tactics in team sports.
- It covers collecting data through sensors and cameras, as well as different approaches to data analysis including rule-based and machine learning methods.
- Specifically, it proposes combining experience/theory-based approaches with machine learning to automatically classify attacking and defensive tactics, predict player trajectories based on who they are watching, and evaluate players and teams based on movement predictions.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
2018/10/20コンピュータビジョン勉強会@関東「ECCV読み会2018」発表資料
Yew, Z. J., & Lee, G. H. (2018). 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. European Conference on Computer Vision.
Deep Learningについて、日本情報システム・ユーザー協会(JUAS)のJUAS ビジネスデータ研究会 AI分科会で発表しました。その際に使用した資料です。専門家向けではなく、一般向けの資料です。
なお本資料は、2015年12月の日本情報システム・ユーザー協会(JUAS)での発表資料の改訂版となります。
This document summarizes a paper titled "DeepI2P: Image-to-Point Cloud Registration via Deep Classification". The paper proposes a method for estimating the camera pose within a point cloud map using a deep learning model. The model first classifies whether points in the point cloud fall within the camera's frustum or image grid. It then performs pose optimization to estimate the camera pose by minimizing the projection error of inlier points onto the image. The method achieves more accurate camera pose estimation compared to existing techniques based on feature matching or depth estimation. It provides a new approach for camera localization using point cloud maps without requiring cross-modal feature learning.
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識・理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
3. 紹介論文
Discriminative Optimization: Theory and
Application to Point Cloud Registration
JayakornVongkulbhisal, Fernando De la Torre, Joao P.
Costeira
点群同士の位置合わせをコスト関数の最小化とい
う形をとらず、特徴量から直接移動方向を算出す
る手法を提案
高速かつロバスト
ポスターで話聞いて面白いと思ったので紹介