2018/10/20コンピュータビジョン勉強会@関東「ECCV読み会2018」発表資料
Yew, Z. J., & Lee, G. H. (2018). 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. European Conference on Computer Vision.
This document summarizes a paper titled "DeepI2P: Image-to-Point Cloud Registration via Deep Classification". The paper proposes a method for estimating the camera pose within a point cloud map using a deep learning model. The model first classifies whether points in the point cloud fall within the camera's frustum or image grid. It then performs pose optimization to estimate the camera pose by minimizing the projection error of inlier points onto the image. The method achieves more accurate camera pose estimation compared to existing techniques based on feature matching or depth estimation. It provides a new approach for camera localization using point cloud maps without requiring cross-modal feature learning.
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識・理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
12. [基礎知識]Pose Graph
17
Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D.
(2015). ORB-SLAM:AVersatile and Accurate
Monocular SLAM System. IEEETransactions on
Robotics, 31(5),
共通の特徴点を持
つキーフレーム同
士をつなげて作成
するグラフ
ノードは回転と位置
の情報を持つ
Loop Closingに使用