SlideShare a Scribd company logo
第7回全日本CV勉強会 CVPR2021読み会(前編)
DeepI2P: Image-to-Point Cloud Registration
via Deep Classification
2021/07/11 takmin
自己紹介
2
株式会社ビジョン&ITラボ 代表取締役
皆川 卓也(みながわ たくや)
博士(工学)
「コンピュータビジョン勉強会@関東」主催
株式会社フューチャースタンダード 技術顧問
略歴:
1999-2003年
日本HP(後にアジレント・テクノロジーへ分社)にて、ITエンジニアとしてシステム構築、プリ
セールス、プロジェクトマネジメント、サポート等の業務に従事
2004-2009年
コンピュータビジョンを用いたシステム/アプリ/サービス開発等に従事
2007-2010年
慶應義塾大学大学院 後期博士課程にて、コンピュータビジョンを専攻
単位取得退学後、博士号取得(2014年)
2009年-現在
フリーランスとして、コンピュータビジョンのコンサル/研究/開発等に従事(2018年法人化)
http://visitlab.jp
ビジョン
技術の町医者
AIビジネスについて、気軽に相談できる
紹介する論文
4
 DeepI2P: Image-to-Point Cloud Registration via Deep
Classification
 Jiaxin Li (Bytedance), Gim Hee Lee (National University of
Singapore)
 選んだ理由:
 個人的に興味のあるテーマ
興味をもった背景
5
都市等の点群化が進展
Project PLATEAU Shizuoka Point Cloud DB
都営大江戸線都庁駅前点群データ
興味をもった背景
6
都市等の点群化が進展
人物検出、車両検出等、AIを導入したカメラも普及
カメラ画像が点群内のどの位置を撮影しているかがわ
かれば、三次元空間中の人やモノの位置を動的に把握
できるようになる
目的
7
 点群におけるカメラの自己位置推定を行う
 LiDARはカメラに比べて高コスト。
 一度LiDARで三次元マップを作製したら、カメラを用いて自己
位置推定する方が安価
特徴点マッチングによる自己位置推定 識別による自己位置推定(本手法)
Related Work: 2D3D-MatchNet
 画像はSIFT、点群はISSによってキーポイントを抽出し、キー
ポイント間のマッチングを行うための特徴量をTriplet Lossを
用いて学習
Feng, M., Hu, S.,Ang, M., & Lee, G. H. (2019). 2D3D-MatchNet: Learning to Match Keypoints Across 2D Image and 3D Point Cloud.
International Conference on Robotics and Automation .
Related Work: 2D-3D Line Correspondences
 画像と点群上の直線をマッチさせることで自己位置推定
Visual SLAMによるTrackingが前提条件
Yu, H., Zhen,W.,Yang,W., Zhang, J., & Scherer, S. (2020). Monocular Camera Localization in Prior LiDAR Maps with 2D-3D Line
Correspondences. IEEE International Conference on Intelligent Robots and Systems
概要
 既存手法(2D3D-MatchNet)では、点群の特徴
点と画像の特徴点とのマッチングによる自己
位置推定
SIFTとISSで取る特徴点が違う
 Cross-Modalな特徴学習を避けて、点群が画
像のFrustumやGrid内に収まるかという識別
問題として解く。
1. 点群が画像のFrustum/Grid内に存在するかを判
定するネットワーク(Classification)
2. 点群を画像上に投影し、姿勢を最適化(Pose
Optimization)
1. Classification
 LiDARで取得した点の1つ1つが画像に投影可能な範囲
(Frustum内)かどうかを判定
Frustum=カメラの視野を表す四角錐
Network Architecture
Network Architecture
PointNet++で点群
をグルーピングしな
がら特徴量抽出
Network Architecture
ResNetで画像から
特徴量抽出
Network Architecture
画像のグローバル
特徴と点群特徴か
ら画像の重み付き
特徴算出
Network Architecture
画像と点群のグロー
バル特徴、Attention
Fusionの出力、点群
グループ特徴から点
群特徴をUp Sampling
Network Architecture
各点がFrustum(また
は画像グリッド)内に
含まれるかの判定
Network Architecture
画像グローバル特徴 点群局所特徴
画像特徴
Attention
重み付き画像特徴
Network Architecture
画像グローバル特徴 点群局所特徴
画像特徴
Attention
重み付き画像特徴
Training Pipeline
1. データセットから画像と点群のペア(𝐼, 𝑃𝑟𝑎𝑤)、および相
対位置𝐺𝑐
𝑝
を取得
𝐼
𝑃𝑟𝑎𝑤
𝐺𝑐
𝑝
カメラ座標系 LiDAR座標系
Training Pipeline
2. ランダムな回転/移動𝐺𝑟を与え、それに合わせて点群
の座標とLiDARの相対位置を変換
𝐼
𝑃 = 𝐺𝑟𝑃𝑟𝑎𝑤
𝐺𝑐
𝑝
カメラ座標系 LiDAR座標系
𝐺 = 𝐺𝑐
𝑝
𝐺𝑟
−1
Training Pipeline
3. 点群がFrustum内に入っているかを判定し、各点にラベ
ル𝑙𝑖
𝑐
∈ 0,1 を付与
𝐼
カメラ座標系
LiDAR座標系
𝐺 = 𝐺𝑐
𝑝
𝐺𝑟
−1
𝑙𝑖
𝑐
= 0
𝑙𝑖
𝑐
= 1
Training Pipeline
4. 画像と点群のペア 𝐼, 𝑃 でネットワークへ入力
5. Frustum内かどうかを識別
6. Cross Entropy Lossでネットワークを学習
𝐼
𝑃
2. Pose Optimization
 ClassificationでFrustum内と判定された点を画像内に投
影可能な姿勢 ෠
𝐺を推定
投影
2. Pose Optimization
解きたい問題
෠
𝐺 = argmax
𝐺∈SE(3)
෍
𝑖=1
𝑁
𝑓 𝐏𝑖; 𝐺, 𝐾, 𝐻, 𝑊 − 0.5 መ
𝑙𝑖
𝑐
− 0.5
投影
点をカメラ姿勢𝑮で画像
に投影し、画像内に収
まるかどうかを判定
(6)
点がfrustum
内か
投影点が
画像内か
カメラ姿勢
コスト関数の最小化
 (6)式を緩和
෠
𝐺 = argmin
𝐺∈SE(3)
෍
𝑖=1
𝑁
𝑟𝑖 𝐺; መ
𝑙𝑖
𝑐
(12)
መ
𝑙𝑖
𝑐
= 0 (frustum外)の時、投影した点が画像の内側でコストが正
መ
𝑙𝑖
𝑐
= 1 (frustum内)の時、投影した点が画像の外側でコストが正
となるコスト関数
点群の各点を画像上へ投影し、コストの総和が最小となる姿勢
෡
𝑮をガウスニュートン法で求める
ニューラルネットは使わない
ClassificationでFrustum内と判定された点の
コスト
姿勢𝐺で投影された点 𝑝𝑥𝑖
′ , 𝑝𝑦𝑖
′
𝑔 𝑝𝑥𝑖
′ ; 𝑊 = max −𝑝𝑥𝑖
′ , 0 + max 𝑝𝑥𝑖
′ − 𝑊, 0
𝑔 𝑝𝑦𝑖
′ ; 𝐻 = max −𝑝𝑦𝑖
′ , 0 + max 𝑝𝑦𝑖
′ − 𝐻, 0
ℎ 𝑧𝑖
′
; 𝑊 = 𝛼 ∙ max −𝑧𝑖
′
, 0
𝑝𝑥𝑖
′
, 𝑝𝑦𝑖
′
画像内はコストゼロ
画像外は画像からのL1距離
焦点より後ろにある場合のコスト
(7)
(8)
ClassificationでFrustum外と判定された点の
コスト
𝑢 𝑝𝑥𝑖
′
; 𝑊 =
𝑊
2
− 𝑝𝑥𝑖
′
−
𝑊
2
𝑢 𝑝𝑦𝑖
′
; 𝐻 =
𝐻
2
− 𝑝𝑦𝑖
′
−
𝐻
2
𝑝𝑥𝑖
′ , 𝑝𝑦𝑖
′
画像内は正のL1距離
画像外は画像からの負のL1距離
(9)
コスト関数の最小化
 コストの総和が最小となる姿勢 ෠
𝐺をガウスニュートン法で求める
෠
𝐺 = argmin
𝐺∈SE(3)
෍
𝑖=1
𝑁
𝑟𝑖 𝐺; መ
𝑙𝑖
𝑐
(12)
Iteration = 0 Iteration = 40 Iteration = 80
𝑟𝑖
0
= 𝑢 𝑝𝑥𝑖
′
; 𝑊 + 𝑢 𝑝𝑦𝑖
′
; 𝐻 ∙ 𝕝 𝑝𝑥𝑖
′
, 𝑝𝑦𝑖
′
, 𝑧𝑖
′
; 𝐻, 𝑊
𝑟𝑖
1
= 𝑔 𝑝𝑥𝑖
′
; 𝑊 + 𝑔 𝑝𝑦𝑖
′
; 𝐻 + ℎ 𝑧𝑖
′ (11)
: መ
𝑙𝑖
𝑐
= 0
: መ
𝑙𝑖
𝑐
= 1
(𝑝𝑥𝑖
′
, 𝑝𝑦𝑖
′
)が画像内なら0、それ以外1
Experiments
 Oxfordデータセット+KITTIデータセット
で評価
点群と画像のペアは±10mの範囲でラン
ダムに選択
 Pose Optimization
初期姿勢𝐺(0)
を60回ランダムに生成し、最
適化の結果最小コストとなるものを採用
初期姿勢𝐺(0)
のrotationはz軸を中心とした
回転のみ、translationはxy平面上でのみ
Experiments
Grid ClassificationとFrustum Classificationの可視化
 緑:どちらでも正しく識別
 黄色:Frustum Classificationのみ正しく識別
 赤: Frustum Classificationで外と判定
 青: Frustum Classificationで内と判定
Experiments
Frustum Classification + Pose Optimizationの結果例
Oxford KITTI
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
Global Image Feature +
Global Point Cloud Feature
からMLPでPose推定
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
ニューラルネットによる単眼
デプス推定+点群キーポイ
ントマッチング
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
ニューラルネットによる単眼
デプス推定+Ground Truthを
初期位置としたICP
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
32x32の画像Grid単位
で点のIn/Outを識別し、
PnPで姿勢推定
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
画像全体でFrustumの
In/Out判定+6DoFで姿
勢推定
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
画像全体でFrustumの
In/Out判定+3DoFで姿
勢推定
Experiments: Registration Accuracy
 RTE = Relative Translational Error
 RRE = Relative Rotation Error
MonoDepth2 + GT-ICPは初期値がGround Truthであるが、RREは上回り、RTEは同等
Ablation Study
Ablation Study
点群の密度
Pose Optimization
の初期値試行回数
点群と画像間の距
離の最大値
まとめ
 画像と点群という異なる領域の位置合わせ(レジスト
レーション)を提案
 レジストレーションを2つの問題に分割
点が画像内に収まるかという識別問題をニューラルネットワー
クで解く
カメラ/LiDAR間の姿勢を、点群のカメラへの投影によって最
小二乗問題として解く
 OxfordおよびKITTIデータセットで有用性確認
Ad

More Related Content

What's hot (20)

SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東) BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
Mai Nishimura
 
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
Deep Learning JP
 
Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線
Yoshitaka Ushiku
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門
Yasunori Nihei
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
Deep Learning JP
 
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Yosuke Shinya
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
Kitsukawa Yuki
 
三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ
Naoya Chiba
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
joisino
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
Attention-Guided GANについて
Attention-Guided GANについてAttention-Guided GANについて
Attention-Guided GANについて
yohei okawa
 
SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)
Masaya Kaneko
 
動作認識の最前線:手法,タスク,データセット
動作認識の最前線:手法,タスク,データセット動作認識の最前線:手法,タスク,データセット
動作認識の最前線:手法,タスク,データセット
Toru Tamaki
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東) BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
Mai Nishimura
 
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
[DL輪読会]Deep High-Resolution Representation Learning for Human Pose Estimation
Deep Learning JP
 
Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線
Yoshitaka Ushiku
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門
Yasunori Nihei
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
[DL輪読会]SoftTriple Loss: Deep Metric Learning Without Triplet Sampling (ICCV2019)
Deep Learning JP
 
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Active Convolution, Deformable Convolution ―形状・スケールを学習可能なConvolution―
Yosuke Shinya
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
Kitsukawa Yuki
 
三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ
Naoya Chiba
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
joisino
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
Attention-Guided GANについて
Attention-Guided GANについてAttention-Guided GANについて
Attention-Guided GANについて
yohei okawa
 
SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)
Masaya Kaneko
 
動作認識の最前線:手法,タスク,データセット
動作認識の最前線:手法,タスク,データセット動作認識の最前線:手法,タスク,データセット
動作認識の最前線:手法,タスク,データセット
Toru Tamaki
 

Similar to 20210711 deepI2P (20)

Log polar coordinates
Log polar coordinatesLog polar coordinates
Log polar coordinates
Oğul Göçmen
 
A Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth EstimationA Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth Estimation
Ryo Takahashi
 
Final Report for project
Final Report for projectFinal Report for project
Final Report for project
Rajarshi Roy
 
Class[4][19th jun] [three js-camera&light]
Class[4][19th jun] [three js-camera&light]Class[4][19th jun] [three js-camera&light]
Class[4][19th jun] [three js-camera&light]
Saajid Akram
 
ANISH_and_DR.DANIEL_augmented_reality_presentation
ANISH_and_DR.DANIEL_augmented_reality_presentationANISH_and_DR.DANIEL_augmented_reality_presentation
ANISH_and_DR.DANIEL_augmented_reality_presentation
Anish Patel
 
Ijcet 06 10_001
Ijcet 06 10_001Ijcet 06 10_001
Ijcet 06 10_001
IAEME Publication
 
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET Journal
 
Flow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action RecognitionFlow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action Recognition
IRJET Journal
 
Lecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdfLecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdf
samaghorab
 
Lecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdfLecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdf
samaghorab
 
Y1 gd engine_terminology
Y1 gd engine_terminologyY1 gd engine_terminology
Y1 gd engine_terminology
Jaket123
 
IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET- Design and Implementation of ATM Security System using Vibration Senso...IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET Journal
 
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET Journal
 
Design and Implementation of EZW & SPIHT Image Coder for Virtual Images
Design and Implementation of EZW & SPIHT Image Coder for Virtual ImagesDesign and Implementation of EZW & SPIHT Image Coder for Virtual Images
Design and Implementation of EZW & SPIHT Image Coder for Virtual Images
CSCJournals
 
Y1 gd engine_terminology
Y1 gd engine_terminologyY1 gd engine_terminology
Y1 gd engine_terminology
Jordanianmc
 
Keynote at Tracking Workshop during ISMAR 2014
Keynote at Tracking Workshop during ISMAR 2014Keynote at Tracking Workshop during ISMAR 2014
Keynote at Tracking Workshop during ISMAR 2014
Darius Burschka
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Intro to computer vision in .net
Intro to computer vision in .netIntro to computer vision in .net
Intro to computer vision in .net
Stephen Lorello
 
Low Light Image Enhancement Using Zero-DCE algorithm
Low Light Image Enhancement Using Zero-DCE algorithmLow Light Image Enhancement Using Zero-DCE algorithm
Low Light Image Enhancement Using Zero-DCE algorithm
IRJET Journal
 
Radar application project help
Radar application project helpRadar application project help
Radar application project help
Assignmentpedia
 
A Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth EstimationA Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth Estimation
Ryo Takahashi
 
Final Report for project
Final Report for projectFinal Report for project
Final Report for project
Rajarshi Roy
 
Class[4][19th jun] [three js-camera&light]
Class[4][19th jun] [three js-camera&light]Class[4][19th jun] [three js-camera&light]
Class[4][19th jun] [three js-camera&light]
Saajid Akram
 
ANISH_and_DR.DANIEL_augmented_reality_presentation
ANISH_and_DR.DANIEL_augmented_reality_presentationANISH_and_DR.DANIEL_augmented_reality_presentation
ANISH_and_DR.DANIEL_augmented_reality_presentation
Anish Patel
 
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET- An Acute Method of Encryption & Decryption by using Histograms and Che...
IRJET Journal
 
Flow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action RecognitionFlow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action Recognition
IRJET Journal
 
Lecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdfLecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdf
samaghorab
 
Lecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdfLecture-1-2-+(1).pdf
Lecture-1-2-+(1).pdf
samaghorab
 
Y1 gd engine_terminology
Y1 gd engine_terminologyY1 gd engine_terminology
Y1 gd engine_terminology
Jaket123
 
IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET- Design and Implementation of ATM Security System using Vibration Senso...IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET- Design and Implementation of ATM Security System using Vibration Senso...
IRJET Journal
 
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET- Real Time Implementation of Bi-Histogram Equalization Method on Androi...
IRJET Journal
 
Design and Implementation of EZW & SPIHT Image Coder for Virtual Images
Design and Implementation of EZW & SPIHT Image Coder for Virtual ImagesDesign and Implementation of EZW & SPIHT Image Coder for Virtual Images
Design and Implementation of EZW & SPIHT Image Coder for Virtual Images
CSCJournals
 
Y1 gd engine_terminology
Y1 gd engine_terminologyY1 gd engine_terminology
Y1 gd engine_terminology
Jordanianmc
 
Keynote at Tracking Workshop during ISMAR 2014
Keynote at Tracking Workshop during ISMAR 2014Keynote at Tracking Workshop during ISMAR 2014
Keynote at Tracking Workshop during ISMAR 2014
Darius Burschka
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Intro to computer vision in .net
Intro to computer vision in .netIntro to computer vision in .net
Intro to computer vision in .net
Stephen Lorello
 
Low Light Image Enhancement Using Zero-DCE algorithm
Low Light Image Enhancement Using Zero-DCE algorithmLow Light Image Enhancement Using Zero-DCE algorithm
Low Light Image Enhancement Using Zero-DCE algorithm
IRJET Journal
 
Radar application project help
Radar application project helpRadar application project help
Radar application project help
Assignmentpedia
 
Ad

More from Takuya Minagawa (20)

「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
Takuya Minagawa
 
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
Takuya Minagawa
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
Takuya Minagawa
 
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Takuya Minagawa
 
MobileNeRF
MobileNeRFMobileNeRF
MobileNeRF
Takuya Minagawa
 
点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ
Takuya Minagawa
 
Learning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal ProblemsLearning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal Problems
Takuya Minagawa
 
ConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdfConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdf
Takuya Minagawa
 
楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事
Takuya Minagawa
 
20201010 personreid
20201010 personreid20201010 personreid
20201010 personreid
Takuya Minagawa
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
Takuya Minagawa
 
2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)
Takuya Minagawa
 
20200704 bsp net
20200704 bsp net20200704 bsp net
20200704 bsp net
Takuya Minagawa
 
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
Takuya Minagawa
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
Takuya Minagawa
 
20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summary
Takuya Minagawa
 
Visual slam
Visual slamVisual slam
Visual slam
Takuya Minagawa
 
20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey
Takuya Minagawa
 
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
Takuya Minagawa
 
run Keras model on opencv
run Keras model on opencvrun Keras model on opencv
run Keras model on opencv
Takuya Minagawa
 
「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
「第63回コンピュータビジョン勉強会@関東」発表資料 CVの社会実装について考えていたらゲームを作っていた話
Takuya Minagawa
 
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
Takuya Minagawa
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
Takuya Minagawa
 
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Takuya Minagawa
 
点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ
Takuya Minagawa
 
Learning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal ProblemsLearning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal Problems
Takuya Minagawa
 
ConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdfConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdf
Takuya Minagawa
 
楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事
Takuya Minagawa
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
Takuya Minagawa
 
2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)
Takuya Minagawa
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
Takuya Minagawa
 
20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summary
Takuya Minagawa
 
20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey
Takuya Minagawa
 
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
Takuya Minagawa
 
run Keras model on opencv
run Keras model on opencvrun Keras model on opencv
run Keras model on opencv
Takuya Minagawa
 
Ad

Recently uploaded (20)

Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 

20210711 deepI2P