SlideShare a Scribd company logo
Seminar Series on
Linear Algebra for Machine Learning
Part 3: Factorization and Linear Transformations
Dr. Ceni Babaoglu
Data Science Laboratory
Ryerson University
cenibabaoglu.com
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Overview
1 Row and Column Spaces
2 Rank of a Matrix
3 Rank and Singularity
4 Inner Product Spaces
5 Gram-Schmidt Process
6 Factorization
7 Linear Transformation
8 Linear Transformation and Singularity
9 Similar Matrices
10 References
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Row and Column Spaces
Let
A =





a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...
...
...
...
...
am1 am2 am3 . . . amn





be an m × n matrix.
The rows of A, considered as vectors in Rn, span a subspace
of Rn called the row space of A.
Similarly, the columns of A, considered as vectors in Rm, span
a subspace of Rm called the column space of A.
If A and B are two m × n row (column) equivalent matrices,
then the row (column) spaces of A and B are equal.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Rank of a Matrix
The dimension of the row (column) space of A is called the
row (column) rank of A.
The row rank and column rank of the m × n matrix A = [aij ]
are equal.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Rank and Singularity
A is nonsingular.
Ax = 0 has only the trivial solution.
A is row (column) equivalent to In.
For every vector b in Rn, the system Ax = b has a unique
solution.
det(A) = 0.
The rank of A is n.
The rows of A form a linearly independent set of vectors in Rn.
The columns of A form a linearly independent set of vectors in
Rn.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Let A =


1 −1 2 0 −3
0 1 0 4 0
2 −1 4 4 −6

. Find the following:
(i) A basis for the column space of A and its dimension.
(ii) A basis for the row space of A and its dimension.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example


1 −1 2 0 −3
0 1 0 4 0
2 −1 4 4 −6

 S3−2S1→S3
−−−−−−−→


1 −1 2 0 −3
0 1 0 4 0
0 1 0 4 0


S1+S2→S1
S3−S2→S3
−−−−−−→


1 0 2 4 −3
0 1 0 4 0
0 0 0 0 0


(i) The column space of A is spanned by the vectors (1, 0, 2)T
and
(−1, 1, −1)T
. These vectors are linearly independent.
{(1, 0, 2)T
, (−1, 1, −1)T
} is a basis for this space and its dimension is 2.
(ii) The row space of A is spanned by the vectors (1, 0, 2, 4, −3) and
(0, 1, 0, 4, 0). These vectors are linearly independent.
{(1, 0, 2, 4, −3), (0, 1, 0, 4, 0)} is a basis for this space and its
dimension is 2.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Inner Product Spaces
Let V be a real vector space. An inner product on V is a function
that assigns to each ordered pair of vectors u, v in V real number
(u, v) satisfying the following properties:
(u, u) ≥ 0, (u, u) = 0 if and only if u = 0v
(v, u) = (u, v) for any u, v in V
(u + v, w) = (u, w) + (v, w) for any u, v, w in V
(cu, v) = c(u, v) for u, v in V and c, a real scalar
A real vector space that has an inner product defined on it is
called an inner product space. If the space is finite
dimensional it is called a Euclidean space.
In an inner product space we define the length of
a vector u by u = (u, u).
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Gram-Schmidt Process
Let V be an inner product space and W = {0} an m-dimensional
subspace of V . Then there exists an orthonormal basis
T = {w1, w2, · · · , wm} for W .
Let S = {u1, u2, · · · , um} be any basis for W . Construct an
orthogonal basis T∗ = {v1, v2, · · · , vm} for W. Select any one of
the vectors in S, say u1 and call it v1. Look for a vector v2 in the
subspace W1 of W spanned by {u1, u2} that is orthogonal to v1.
v2 = u2 −
(u2, v1)
(v1, v1)
v1
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Gram-Schmidt Process
Next, we look for a vector v3 in the subspace W2 of W spanned by
{u1, u2, u3} that is orthogonal to both v1 and v2.
v2 = u2 −
(u2, v1)
(v1, v1)
v1
v3 = u3 −
(u3, v1)
(v1, v1)
v1 −
(u3, v2)
(v2, v2)
v2
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Let’s use the Gram-Schmidt process to find an orthonormal basis
for the subspace of R4 with basis u1 = (1, 1, 1, 0)T ,
u2 = (−1, 0, −1, 1)T and u3 = (−1, 0, 0, −1)T . First let v1 = u1,
v2 = u2 −
(u2, v1)
(v1, v1)
v1 =




−1
0
−1
1



 − (−
2
3
)




1
1
1
1



 =




−1/3
2/3
−1/3
1




Multiplying v2 by 3 to clear fractions, we get




−1
2
−1
3




Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
v3 = u3 −
(u3, v1)
(v1, v1)
v1 −
(u3, v2)
(v2, v2)
v2 =




−4/5
3/5
1/5
−3/5




Multiplying v3 by 5 to clear fractions, we get (−4, 3, 1, −3)T . An
orthogonal basis:
{v1, v2, v3} =




1
1
1
0



 ,




−1
2
−1
3



 ,




−4
3
1
−3




An orthonormal basis:
{w1, w2, w3} =




1/
√
3
1/
√
3
1/
√
3
0



 ,




−1/
√
15
2/
√
15
−1/
√
15
3/
√
15



 ,




−4/
√
35
3/
√
35
1/
√
35
−3/
√
35




Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Factorization
If A is an m × n matrix with linearly independent columns, then A
can be factored as
A = QR,
Q: an m × n matrix whose columns form an orthonormal basis for
the column space of A,
R: an n × n nonsingular upper triangular matrix.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Let’s find the factorization of




1 −1 −1
1 0 0
1 −1 0
0 1 −1



 .
Let’s define the columns of A as the vectors u1, u2, u3.
The orthonormal basis for the column space of A is
w1 =




1/
√
3
1/
√
3
1/
√
3
0



 , w2 =




−1/
√
15
2/
√
15
−1/
√
15
3/
√
15



 , w3 =




−4/
√
35
3/
√
35
1/
√
35
−3/
√
35



 .
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Q =




1/
√
3 −1/
√
15 −4/
√
35
1/
√
3 2/
√
15 3/
√
35
1/
√
3 −1/
√
15 1/
√
35
0 3/
√
15 −3/
√
35




R =


r11 r12 r13
0 r22 r23
0 0 r33


where rji = (ui , wj ).
R =


3/
√
3 −2/
√
3 −1/
√
3
0 5/
√
15 −2/
√
15
0 0 7/
√
35


A = QR
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Linear Transformation
A mapping L : V −→ W is said to be a linear transformation or a
linear operator if
L(αv1 + βv2) = αL(v1) + βL(v2)
OR
L(v1 + v2) = L(v1) + L(v2), (α = β = 1)
L(αv) = αL(v) (v = v1, β = 0)
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
L(x) = 3x, x ∈ R2
.
L(x + y) = 3(x + y) = L(x + y)
L(αx) = 3(αx) = αL(x)
L is a linear transformation.
α : positive scalar
F(x) = αx can be thought of as a stretching or shrinking by a
factor of α.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
L(x) = x1e1, x ∈ R2
.
If x = (x1, x2)T
, then L(x) = (x, 0)T
If y = (y1, y2)T
, then αx + βy =
αx1 + βy1
αx2 + βy2
L(αx + βy) = (αx1 + βy1)e1 = α(x1e1) + β(y1e1) = αL(x) + βL(y)
L is a linear transformation, a projection onto the x1 axis.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
L(x) = (−x2, x1)T , x = (x1, x2)T ∈ R2.
L(αx + βy) =
−(αx2 + βy2)
αx1 + βy1
= α
−x2
x1
+ β
−y2
y1
= αL(x) + βL(y)
L is a linear transformation. It has the effect of rotating each vector in R2
by
90◦
in the counterclockwise direction.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
M(x) = (x2
1 + x2
2 )1/2, M : R2 −→ R.
M(αx) = (α2
x2
1 + α2
x2
2 )1/2
=| α | M(x),
αM(x) = M(αx), α < 0, x = 0.
M is not a linear transformation.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Linear One-to-one Transformations
A linear transformation L : V → W is called one-to-one if it is
a one-to-one function; that is, if v1 = v2 implies that
L(v1) = L(v2).
An equivalent statement is that L is one-to-one if
L(v1) = L(v2) implies that v1 = v2.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Linear Onto Transformations
If L : V → W is a linear transformation of a vector space V
into a vector space W , then the range of L or image of V
under L, denoted by range L , consists of all those vectors in
W that are images under L of vectors in V .
Thus w is in range L if there exists some vector v in V such
that L(v) = w. The linear transformation L is called onto if
range L = W .
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Linear Transformation and Singularity
A is nonsingular.
Ax = 0 has only the trivial solution.
A is row (column) equivalent to In.
For every vector b in Rn, the system Ax = b has a unique
solution.
det(A) = 0.
The rank of A is n.
The rows of A form a linearly independent set of vectors in Rn.
The columns of A form a linearly independent set of vectors in
Rn.
The linear transformation L : Rn −→ Rn defined by
L(x) = A(x), for x in Rn, is one-to-one and onto.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Similar Matrices
If A and B are n × n matrices, we say that B is similar to A if
there is a nonsingular matrix P such that B = P−1AP.
Let V be any n−dimensional vector space and let A and B be
any n × n matrices. Then A and B are similar if and only if A
and B represent the same linear transformation L : V → V
with respect to two ordered bases for V .
If A and B are similar n × n matrices, then rank A = rank B.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Let L : R3 → R3 be defined by
L([ u1 u2 u3 ]) = [ 2u1 − u3 u1 + u2 − u3 u3 ]
and S = {[1 0 0], [0 1 0], [0 0 1]} be the natural basis
for R3. The representation of L with respect of S is
A =


2 0 −1
1 1 −1
0 0 1

 .
Considering S = {[1 0 1], [0 1 0], [1 1 0]} as ordered
bases for R3, the transition matrix P from S to S is
P =


1 0 1
0 1 1
1 0 0

 P−1
=


0 0 1
−1 1 1
1 0 −1

 .
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Example
Then the representation of L with respect to S is
B = P−1
AP =


1 0 0
0 1 0
0 0 2


The matrices
A =


2 0 −1
1 1 −1
0 0 1

 and B =


1 0 0
0 1 0
0 0 2


are similar.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
References
Linear Algebra With Applications, 7th Edition
by Steven J. Leon.
Elementary Linear Algebra with Applications, 9th Edition
by Bernard Kolman and David Hill.
Dr. Ceni Babaoglu cenibabaoglu.com
Linear Algebra for Machine Learning: Factorization and Linear Transformations
Ad

More Related Content

What's hot (20)

Matrices
MatricesMatrices
Matrices
Sachin Vyavahare
 
Interpolation
InterpolationInterpolation
Interpolation
Bhavik A Shah
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
Franklin College Mathematics and Computing Department
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
Riddhi Patel
 
Echelon forms
Echelon formsEchelon forms
Echelon forms
kishor pokar
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
Rutvij Patel
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
 
Vector space
Vector spaceVector space
Vector space
Jaimin Patel
 
TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPointTOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
AqsaAhmed26
 
Unit 5: All
Unit 5: AllUnit 5: All
Unit 5: All
Hector Zenil
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
shubham211
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
tirath prajapati
 
Rank nullity theorem
Rank nullity theoremRank nullity theorem
Rank nullity theorem
Roqui Gonzaga
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
Manikanta satyala
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Vinod Srivastava
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
Self-employed
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiation
andrushow
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
Matthew Leingang
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
Patel Raj
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
Shakehand with Life
 

Similar to 3. Linear Algebra for Machine Learning: Factorization and Linear Transformations (20)

Proyecto grupal algebra parcial ii
Proyecto grupal algebra parcial iiProyecto grupal algebra parcial ii
Proyecto grupal algebra parcial ii
JHANDRYALCIVARGUAJAL
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chaimae Baroudi
 
Ravina773728o38363382836,230000603029.pptx
Ravina773728o38363382836,230000603029.pptxRavina773728o38363382836,230000603029.pptx
Ravina773728o38363382836,230000603029.pptx
sheetaljangra222
 
Vectors of Bachelors of computer science
Vectors of Bachelors of computer scienceVectors of Bachelors of computer science
Vectors of Bachelors of computer science
legendgamingnp
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Andres Mendez-Vazquez
 
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
GersonMendoza15
 
Seismic data processing introductory lecture
Seismic data processing introductory lectureSeismic data processing introductory lecture
Seismic data processing introductory lecture
Amin khalil
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n space
Ahmad Saifullah
 
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx gTN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
o422187
 
Aplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en laAplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en la
emojose107
 
Vectors Vectors Vectors Vectors Vectors1.ppt
Vectors Vectors Vectors Vectors Vectors1.pptVectors Vectors Vectors Vectors Vectors1.ppt
Vectors Vectors Vectors Vectors Vectors1.ppt
danartalabani
 
Grupo 13 taller parcial2_nrc2882
Grupo 13 taller parcial2_nrc2882Grupo 13 taller parcial2_nrc2882
Grupo 13 taller parcial2_nrc2882
ALEXFERNANDOUTRERASB
 
Lecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdfLecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdf
entesarkareem1
 
1625 signal processing and representation theory
1625 signal processing and representation theory1625 signal processing and representation theory
1625 signal processing and representation theory
Dr Fereidoun Dejahang
 
Maths4ml linearalgebra-formula
Maths4ml linearalgebra-formulaMaths4ml linearalgebra-formula
Maths4ml linearalgebra-formula
Nishant Upadhyay
 
1560 mathematics for economists
1560 mathematics for economists1560 mathematics for economists
1560 mathematics for economists
Dr Fereidoun Dejahang
 
real vector space
real vector spacereal vector space
real vector space
Asyraf Ghani
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chaimae Baroudi
 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
AmanSaeed11
 
4. Linear Equations in Two Variables 2.pdf
4. Linear Equations in Two Variables 2.pdf4. Linear Equations in Two Variables 2.pdf
4. Linear Equations in Two Variables 2.pdf
silki0908
 
Proyecto grupal algebra parcial ii
Proyecto grupal algebra parcial iiProyecto grupal algebra parcial ii
Proyecto grupal algebra parcial ii
JHANDRYALCIVARGUAJAL
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chaimae Baroudi
 
Ravina773728o38363382836,230000603029.pptx
Ravina773728o38363382836,230000603029.pptxRavina773728o38363382836,230000603029.pptx
Ravina773728o38363382836,230000603029.pptx
sheetaljangra222
 
Vectors of Bachelors of computer science
Vectors of Bachelors of computer scienceVectors of Bachelors of computer science
Vectors of Bachelors of computer science
legendgamingnp
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Andres Mendez-Vazquez
 
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
APLICACIONES DE ESPACIOS Y SUBESPACIOS VECTORIALES EN LA CARRERA DE ELECTRÓNI...
GersonMendoza15
 
Seismic data processing introductory lecture
Seismic data processing introductory lectureSeismic data processing introductory lecture
Seismic data processing introductory lecture
Amin khalil
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n space
Ahmad Saifullah
 
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx gTN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
TN 112_Lecture_6_22nd_Jan_2025 (1).pptx g
o422187
 
Aplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en laAplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en la
emojose107
 
Vectors Vectors Vectors Vectors Vectors1.ppt
Vectors Vectors Vectors Vectors Vectors1.pptVectors Vectors Vectors Vectors Vectors1.ppt
Vectors Vectors Vectors Vectors Vectors1.ppt
danartalabani
 
Lecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdfLecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdf
entesarkareem1
 
1625 signal processing and representation theory
1625 signal processing and representation theory1625 signal processing and representation theory
1625 signal processing and representation theory
Dr Fereidoun Dejahang
 
Maths4ml linearalgebra-formula
Maths4ml linearalgebra-formulaMaths4ml linearalgebra-formula
Maths4ml linearalgebra-formula
Nishant Upadhyay
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chaimae Baroudi
 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
AmanSaeed11
 
4. Linear Equations in Two Variables 2.pdf
4. Linear Equations in Two Variables 2.pdf4. Linear Equations in Two Variables 2.pdf
4. Linear Equations in Two Variables 2.pdf
silki0908
 
Ad

Recently uploaded (20)

LDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini UpdatesLDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini Updates
LDM Mia eStudios
 
Operations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdfOperations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdf
Arab Academy for Science, Technology and Maritime Transport
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdfExploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Sandeep Swamy
 
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACYUNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
DR.PRISCILLA MARY J
 
Presentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem KayaPresentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public SchoolsK12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
dogden2
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
One Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learningOne Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learning
momer9505
 
Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
LDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini UpdatesLDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini Updates
LDM Mia eStudios
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdfExploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Sandeep Swamy
 
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACYUNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
DR.PRISCILLA MARY J
 
Presentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem KayaPresentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public SchoolsK12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
dogden2
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
One Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learningOne Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learning
momer9505
 
Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Ad

3. Linear Algebra for Machine Learning: Factorization and Linear Transformations

  • 1. Seminar Series on Linear Algebra for Machine Learning Part 3: Factorization and Linear Transformations Dr. Ceni Babaoglu Data Science Laboratory Ryerson University cenibabaoglu.com Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 2. Overview 1 Row and Column Spaces 2 Rank of a Matrix 3 Rank and Singularity 4 Inner Product Spaces 5 Gram-Schmidt Process 6 Factorization 7 Linear Transformation 8 Linear Transformation and Singularity 9 Similar Matrices 10 References Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 3. Row and Column Spaces Let A =      a11 a12 a13 . . . a1n a21 a22 a23 . . . a2n ... ... ... ... ... am1 am2 am3 . . . amn      be an m × n matrix. The rows of A, considered as vectors in Rn, span a subspace of Rn called the row space of A. Similarly, the columns of A, considered as vectors in Rm, span a subspace of Rm called the column space of A. If A and B are two m × n row (column) equivalent matrices, then the row (column) spaces of A and B are equal. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 4. Rank of a Matrix The dimension of the row (column) space of A is called the row (column) rank of A. The row rank and column rank of the m × n matrix A = [aij ] are equal. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 5. Rank and Singularity A is nonsingular. Ax = 0 has only the trivial solution. A is row (column) equivalent to In. For every vector b in Rn, the system Ax = b has a unique solution. det(A) = 0. The rank of A is n. The rows of A form a linearly independent set of vectors in Rn. The columns of A form a linearly independent set of vectors in Rn. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 6. Example Let A =   1 −1 2 0 −3 0 1 0 4 0 2 −1 4 4 −6  . Find the following: (i) A basis for the column space of A and its dimension. (ii) A basis for the row space of A and its dimension. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 7. Example   1 −1 2 0 −3 0 1 0 4 0 2 −1 4 4 −6   S3−2S1→S3 −−−−−−−→   1 −1 2 0 −3 0 1 0 4 0 0 1 0 4 0   S1+S2→S1 S3−S2→S3 −−−−−−→   1 0 2 4 −3 0 1 0 4 0 0 0 0 0 0   (i) The column space of A is spanned by the vectors (1, 0, 2)T and (−1, 1, −1)T . These vectors are linearly independent. {(1, 0, 2)T , (−1, 1, −1)T } is a basis for this space and its dimension is 2. (ii) The row space of A is spanned by the vectors (1, 0, 2, 4, −3) and (0, 1, 0, 4, 0). These vectors are linearly independent. {(1, 0, 2, 4, −3), (0, 1, 0, 4, 0)} is a basis for this space and its dimension is 2. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 8. Inner Product Spaces Let V be a real vector space. An inner product on V is a function that assigns to each ordered pair of vectors u, v in V real number (u, v) satisfying the following properties: (u, u) ≥ 0, (u, u) = 0 if and only if u = 0v (v, u) = (u, v) for any u, v in V (u + v, w) = (u, w) + (v, w) for any u, v, w in V (cu, v) = c(u, v) for u, v in V and c, a real scalar A real vector space that has an inner product defined on it is called an inner product space. If the space is finite dimensional it is called a Euclidean space. In an inner product space we define the length of a vector u by u = (u, u). Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 9. Gram-Schmidt Process Let V be an inner product space and W = {0} an m-dimensional subspace of V . Then there exists an orthonormal basis T = {w1, w2, · · · , wm} for W . Let S = {u1, u2, · · · , um} be any basis for W . Construct an orthogonal basis T∗ = {v1, v2, · · · , vm} for W. Select any one of the vectors in S, say u1 and call it v1. Look for a vector v2 in the subspace W1 of W spanned by {u1, u2} that is orthogonal to v1. v2 = u2 − (u2, v1) (v1, v1) v1 Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 10. Gram-Schmidt Process Next, we look for a vector v3 in the subspace W2 of W spanned by {u1, u2, u3} that is orthogonal to both v1 and v2. v2 = u2 − (u2, v1) (v1, v1) v1 v3 = u3 − (u3, v1) (v1, v1) v1 − (u3, v2) (v2, v2) v2 Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 11. Example Let’s use the Gram-Schmidt process to find an orthonormal basis for the subspace of R4 with basis u1 = (1, 1, 1, 0)T , u2 = (−1, 0, −1, 1)T and u3 = (−1, 0, 0, −1)T . First let v1 = u1, v2 = u2 − (u2, v1) (v1, v1) v1 =     −1 0 −1 1     − (− 2 3 )     1 1 1 1     =     −1/3 2/3 −1/3 1     Multiplying v2 by 3 to clear fractions, we get     −1 2 −1 3     Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 12. Example v3 = u3 − (u3, v1) (v1, v1) v1 − (u3, v2) (v2, v2) v2 =     −4/5 3/5 1/5 −3/5     Multiplying v3 by 5 to clear fractions, we get (−4, 3, 1, −3)T . An orthogonal basis: {v1, v2, v3} =     1 1 1 0     ,     −1 2 −1 3     ,     −4 3 1 −3     An orthonormal basis: {w1, w2, w3} =     1/ √ 3 1/ √ 3 1/ √ 3 0     ,     −1/ √ 15 2/ √ 15 −1/ √ 15 3/ √ 15     ,     −4/ √ 35 3/ √ 35 1/ √ 35 −3/ √ 35     Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 13. Factorization If A is an m × n matrix with linearly independent columns, then A can be factored as A = QR, Q: an m × n matrix whose columns form an orthonormal basis for the column space of A, R: an n × n nonsingular upper triangular matrix. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 14. Example Let’s find the factorization of     1 −1 −1 1 0 0 1 −1 0 0 1 −1     . Let’s define the columns of A as the vectors u1, u2, u3. The orthonormal basis for the column space of A is w1 =     1/ √ 3 1/ √ 3 1/ √ 3 0     , w2 =     −1/ √ 15 2/ √ 15 −1/ √ 15 3/ √ 15     , w3 =     −4/ √ 35 3/ √ 35 1/ √ 35 −3/ √ 35     . Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 15. Example Q =     1/ √ 3 −1/ √ 15 −4/ √ 35 1/ √ 3 2/ √ 15 3/ √ 35 1/ √ 3 −1/ √ 15 1/ √ 35 0 3/ √ 15 −3/ √ 35     R =   r11 r12 r13 0 r22 r23 0 0 r33   where rji = (ui , wj ). R =   3/ √ 3 −2/ √ 3 −1/ √ 3 0 5/ √ 15 −2/ √ 15 0 0 7/ √ 35   A = QR Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 16. Linear Transformation A mapping L : V −→ W is said to be a linear transformation or a linear operator if L(αv1 + βv2) = αL(v1) + βL(v2) OR L(v1 + v2) = L(v1) + L(v2), (α = β = 1) L(αv) = αL(v) (v = v1, β = 0) Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 17. Example L(x) = 3x, x ∈ R2 . L(x + y) = 3(x + y) = L(x + y) L(αx) = 3(αx) = αL(x) L is a linear transformation. α : positive scalar F(x) = αx can be thought of as a stretching or shrinking by a factor of α. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 18. Example L(x) = x1e1, x ∈ R2 . If x = (x1, x2)T , then L(x) = (x, 0)T If y = (y1, y2)T , then αx + βy = αx1 + βy1 αx2 + βy2 L(αx + βy) = (αx1 + βy1)e1 = α(x1e1) + β(y1e1) = αL(x) + βL(y) L is a linear transformation, a projection onto the x1 axis. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 19. Example L(x) = (−x2, x1)T , x = (x1, x2)T ∈ R2. L(αx + βy) = −(αx2 + βy2) αx1 + βy1 = α −x2 x1 + β −y2 y1 = αL(x) + βL(y) L is a linear transformation. It has the effect of rotating each vector in R2 by 90◦ in the counterclockwise direction. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 20. Example M(x) = (x2 1 + x2 2 )1/2, M : R2 −→ R. M(αx) = (α2 x2 1 + α2 x2 2 )1/2 =| α | M(x), αM(x) = M(αx), α < 0, x = 0. M is not a linear transformation. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 21. Linear One-to-one Transformations A linear transformation L : V → W is called one-to-one if it is a one-to-one function; that is, if v1 = v2 implies that L(v1) = L(v2). An equivalent statement is that L is one-to-one if L(v1) = L(v2) implies that v1 = v2. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 22. Linear Onto Transformations If L : V → W is a linear transformation of a vector space V into a vector space W , then the range of L or image of V under L, denoted by range L , consists of all those vectors in W that are images under L of vectors in V . Thus w is in range L if there exists some vector v in V such that L(v) = w. The linear transformation L is called onto if range L = W . Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 23. Linear Transformation and Singularity A is nonsingular. Ax = 0 has only the trivial solution. A is row (column) equivalent to In. For every vector b in Rn, the system Ax = b has a unique solution. det(A) = 0. The rank of A is n. The rows of A form a linearly independent set of vectors in Rn. The columns of A form a linearly independent set of vectors in Rn. The linear transformation L : Rn −→ Rn defined by L(x) = A(x), for x in Rn, is one-to-one and onto. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 24. Similar Matrices If A and B are n × n matrices, we say that B is similar to A if there is a nonsingular matrix P such that B = P−1AP. Let V be any n−dimensional vector space and let A and B be any n × n matrices. Then A and B are similar if and only if A and B represent the same linear transformation L : V → V with respect to two ordered bases for V . If A and B are similar n × n matrices, then rank A = rank B. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 25. Example Let L : R3 → R3 be defined by L([ u1 u2 u3 ]) = [ 2u1 − u3 u1 + u2 − u3 u3 ] and S = {[1 0 0], [0 1 0], [0 0 1]} be the natural basis for R3. The representation of L with respect of S is A =   2 0 −1 1 1 −1 0 0 1   . Considering S = {[1 0 1], [0 1 0], [1 1 0]} as ordered bases for R3, the transition matrix P from S to S is P =   1 0 1 0 1 1 1 0 0   P−1 =   0 0 1 −1 1 1 1 0 −1   . Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 26. Example Then the representation of L with respect to S is B = P−1 AP =   1 0 0 0 1 0 0 0 2   The matrices A =   2 0 −1 1 1 −1 0 0 1   and B =   1 0 0 0 1 0 0 0 2   are similar. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations
  • 27. References Linear Algebra With Applications, 7th Edition by Steven J. Leon. Elementary Linear Algebra with Applications, 9th Edition by Bernard Kolman and David Hill. Dr. Ceni Babaoglu cenibabaoglu.com Linear Algebra for Machine Learning: Factorization and Linear Transformations