SlideShare a Scribd company logo
Types of Algorithms
Algorithm classification
• Algorithms that use a similar problem-solving
approach can be grouped together
• This classification scheme is neither exhaustive
nor disjoint
• The purpose is not to be able to classify an
algorithm as one type or another, but to highlight
the various ways in which a problem can be
attacked
A short list of categories
• Algorithm types we will consider include:
– Simple recursive algorithms
– Backtracking algorithms
– Divide and conquer algorithms
– Dynamic programming algorithms
– Greedy algorithms
– Branch and bound algorithms
– Brute force algorithms
– Randomized algorithms
Simple recursive algorithms I
• A simple recursive algorithm:
– Solves the base cases directly
– Recurs with a simpler subproblem
– Does some extra work to convert the solution to the
simpler subproblem into a solution to the given
problem
• I call these “simple” because several of the other
algorithm types are inherently recursive
Example recursive algorithms
• To count the number of elements in a list:
– If the list is empty, return zero; otherwise,
– Step past the first element, and count the remaining
elements in the list
– Add one to the result
• To test if a value occurs in a list:
– If the list is empty, return false; otherwise,
– If the first thing in the list is the given value, return
true; otherwise
– Step past the first element, and test whether the value
occurs in the remainder of the list
Backtracking algorithms
• Backtracking algorithms are based on a depth-first
recursive search
• A backtracking algorithm:
– Tests to see if a solution has been found, and if so,
returns it; otherwise
– For each choice that can be made at this point,
• Make that choice
• Recur
• If the recursion returns a solution, return it
– If no choices remain, return failure
Example backtracking algorithm
• To color a map with no more than four colors:
– color(Country n)
• If all countries have been colored (n > number of
countries) return success; otherwise,
• For each color c of four colors,
– If country n is not adjacent to a country that has
been colored c
» Color country n with color c
» recursivly color country n+1
» If successful, return success
• Return failure (if loop exits)
Divide and Conquer
• A divide and conquer algorithm consists of two
parts:
– Divide the problem into smaller subproblems of the
same type, and solve these subproblems recursively
– Combine the solutions to the subproblems into a
solution to the original problem
• Traditionally, an algorithm is only called divide
and conquer if it contains two or more recursive
calls
Examples
• Quicksort:
– Partition the array into two parts, and quicksort each
of the parts
– No additional work is required to combine the two
sorted parts
• Mergesort:
– Cut the array in half, and mergesort each half
– Combine the two sorted arrays into a single sorted
array by merging them
Binary tree lookup
• Here’s how to look up something in a sorted
binary tree:
– Compare the key to the value in the root
• If the two values are equal, report success
• If the key is less, search the left subtree
• If the key is greater, search the right subtree
• This is not a divide and conquer algorithm
because, although there are two recursive calls,
only one is used at each level of the recursion
Fibonacci numbers
• To find the nth Fibonacci number:
– If n is zero or one, return one; otherwise,
– Compute fibonacci(n-1) and fibonacci(n-2)
– Return the sum of these two numbers
• This is an expensive algorithm
– It requires O(fibonacci(n)) time
– This is equivalent to exponential time, that is, O(2n)
Dynamic programming algorithms
• A dynamic programming algorithm remembers past results
and uses them to find new results
• Dynamic programming is generally used for optimization
problems
– Multiple solutions exist, need to find the “best” one
– Requires “optimal substructure” and “overlapping subproblems”
• Optimal substructure: Optimal solution contains optimal
solutions to subproblems
• Overlapping subproblems: Solutions to subproblems can be
stored and reused in a bottom-up fashion
• This differs from Divide and Conquer, where subproblems
generally need not overlap
Fibonacci numbers again
• To find the nth Fibonacci number:
– If n is zero or one, return one; otherwise,
– Compute, or look up in a table, fibonacci(n-1) and
fibonacci(n-2)
– Find the sum of these two numbers
– Store the result in a table and return it
• Since finding the nth Fibonacci number involves
finding all smaller Fibonacci numbers, the second
recursive call has little work to do
• The table may be preserved and used again later
Greedy algorithms
• An optimization problem is one in which you want
to find, not just a solution, but the best solution
• A “greedy algorithm” sometimes works well for
optimization problems
• A greedy algorithm works in phases: At each
phase:
– You take the best you can get right now, without regard
for future consequences
– You hope that by choosing a local optimum at each
step, you will end up at a global optimum
Example: Counting money
• Suppose you want to count out a certain amount of money,
using the fewest possible bills and coins
• A greedy algorithm would do this would be:
At each step, take the largest possible bill or coin that does
not overshoot
– Example: To make $6.39, you can choose:
• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39
• For US money, the greedy algorithm always gives the
optimum solution
A failure of the greedy algorithm
• In some (fictional) monetary system, “krons” come
in 1 kron, 7 kron, and 10 kron coins
• Using a greedy algorithm to count out 15 krons,
you would get
– A 10 kron piece
– Five 1 kron pieces, for a total of 15 krons
– This requires six coins
• A better solution would be to use two 7 kron pieces
and one 1 kron piece
– This only requires three coins
• The greedy algorithm results in a solution, but not
in an optimal solution
Branch and bound algorithms
• Branch and bound algorithms are generally used for
optimization problems
– As the algorithm progresses, a tree of subproblems is formed
– The original problem is considered the “root problem”
– A method is used to construct an upper and lower bound for a
given problem
– At each node, apply the bounding methods
• If the bounds match, it is deemed a feasible solution to that
particular subproblem
• If bounds do not match, partition the problem represented by
that node, and make the two subproblems into children nodes
– Continue, using the best known feasible solution to trim sections of
the tree, until all nodes have been solved or trimmed
Example branch and bound algorithm
• Travelling salesman problem: A salesman has to
visit each of n cities (at least) once each, and
wants to minimize total distance travelled
– Consider the root problem to be the problem of finding
the shortest route through a set of cities visiting each
city once
– Split the node into two child problems:
• Shortest route visiting city A first
• Shortest route not visiting city A first
– Continue subdividing similarly as the tree grows
Brute force algorithm
• A brute force algorithm simply tries all
possibilities until a satisfactory solution is found
– Such an algorithm can be:
• Optimizing: Find the best solution. This may require
finding all solutions, or if a value for the best
solution is known, it may stop when any best
solution is found
– Example: Finding the best path for a travelling salesman
• Satisficing: Stop as soon as a solution is found that
is good enough
– Example: Finding a travelling salesman path that is within
10% of optimal
Improving brute force algorithms
• Often, brute force algorithms require exponential
time
• Various heuristics and optimizations can be used
– Heuristic: A “rule of thumb” that helps you decide
which possibilities to look at first
– Optimization: In this case, a way to eliminate certain
possibilites without fully exploring them
Randomized algorithms
• A randomized algorithm uses a random number at
least once during the computation to make a
decision
– Example: In Quicksort, using a random number to
choose a pivot
– Example: Trying to factor a large prime by choosing
random numbers as possible divisors
The End
Ad

More Related Content

Similar to 35-algorithm-types.ppt (20)

Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: Introduction
TayyabSattar5
 
Types of Algorithms.ppt
Types of Algorithms.pptTypes of Algorithms.ppt
Types of Algorithms.ppt
ALIZAIB KHAN
 
DynamicProgramming.pptx
DynamicProgramming.pptxDynamicProgramming.pptx
DynamicProgramming.pptx
SaimaShaheen14
 
algo classification.pptx
algo classification.pptxalgo classification.pptx
algo classification.pptx
ShivaniSharma335055
 
CH-1.1 Introduction (1).pptx
CH-1.1 Introduction (1).pptxCH-1.1 Introduction (1).pptx
CH-1.1 Introduction (1).pptx
satvikkushwaha1
 
Greedy_Backtracking graph coloring.ppt
Greedy_Backtracking graph coloring.pptGreedy_Backtracking graph coloring.ppt
Greedy_Backtracking graph coloring.ppt
SeethaDinesh
 
ADT(Algorithm Design Technique Backtracking algorithm).ppt
ADT(Algorithm Design Technique Backtracking algorithm).pptADT(Algorithm Design Technique Backtracking algorithm).ppt
ADT(Algorithm Design Technique Backtracking algorithm).ppt
AnchalaSharma4
 
Algorithm designs and its technique.ppt
Algorithm designs and  its technique.pptAlgorithm designs and  its technique.ppt
Algorithm designs and its technique.ppt
AnchalaSharma4
 
Algorithm.pptx
Algorithm.pptxAlgorithm.pptx
Algorithm.pptx
DipayanSadhu1
 
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptxbcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
B.T.L.I.T
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
Muthu Vinayagam
 
heuristic search Techniques and game playing.pdf
heuristic search Techniques and game playing.pdfheuristic search Techniques and game playing.pdf
heuristic search Techniques and game playing.pdf
vijeta3feb
 
Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dynamic programming, Branch and bound algorithm & Greedy algorithms Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dr. SURBHI SAROHA
 
ALGO VS FLOW.pptx
ALGO VS FLOW.pptxALGO VS FLOW.pptx
ALGO VS FLOW.pptx
NagendraK18
 
Approximation Algorithms TSP
Approximation Algorithms   TSPApproximation Algorithms   TSP
Approximation Algorithms TSP
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Analysis and Design of Algorithms
Analysis and Design of AlgorithmsAnalysis and Design of Algorithms
Analysis and Design of Algorithms
Bulbul Agrawal
 
Linear Programing.pptx
Linear Programing.pptxLinear Programing.pptx
Linear Programing.pptx
AdnanHaleem
 
Greedy Algorihm
Greedy AlgorihmGreedy Algorihm
Greedy Algorihm
Muhammad Amjad Rana
 
mmmmmmm
mmmmmmmmmmmmmm
mmmmmmm
Kawsar Ahmed
 
Greedy algorithm
Greedy algorithmGreedy algorithm
Greedy algorithm
International Islamic University
 
Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: Introduction
TayyabSattar5
 
Types of Algorithms.ppt
Types of Algorithms.pptTypes of Algorithms.ppt
Types of Algorithms.ppt
ALIZAIB KHAN
 
DynamicProgramming.pptx
DynamicProgramming.pptxDynamicProgramming.pptx
DynamicProgramming.pptx
SaimaShaheen14
 
CH-1.1 Introduction (1).pptx
CH-1.1 Introduction (1).pptxCH-1.1 Introduction (1).pptx
CH-1.1 Introduction (1).pptx
satvikkushwaha1
 
Greedy_Backtracking graph coloring.ppt
Greedy_Backtracking graph coloring.pptGreedy_Backtracking graph coloring.ppt
Greedy_Backtracking graph coloring.ppt
SeethaDinesh
 
ADT(Algorithm Design Technique Backtracking algorithm).ppt
ADT(Algorithm Design Technique Backtracking algorithm).pptADT(Algorithm Design Technique Backtracking algorithm).ppt
ADT(Algorithm Design Technique Backtracking algorithm).ppt
AnchalaSharma4
 
Algorithm designs and its technique.ppt
Algorithm designs and  its technique.pptAlgorithm designs and  its technique.ppt
Algorithm designs and its technique.ppt
AnchalaSharma4
 
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptxbcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
B.T.L.I.T
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
Muthu Vinayagam
 
heuristic search Techniques and game playing.pdf
heuristic search Techniques and game playing.pdfheuristic search Techniques and game playing.pdf
heuristic search Techniques and game playing.pdf
vijeta3feb
 
Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dynamic programming, Branch and bound algorithm & Greedy algorithms Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dynamic programming, Branch and bound algorithm & Greedy algorithms
Dr. SURBHI SAROHA
 
ALGO VS FLOW.pptx
ALGO VS FLOW.pptxALGO VS FLOW.pptx
ALGO VS FLOW.pptx
NagendraK18
 
Analysis and Design of Algorithms
Analysis and Design of AlgorithmsAnalysis and Design of Algorithms
Analysis and Design of Algorithms
Bulbul Agrawal
 
Linear Programing.pptx
Linear Programing.pptxLinear Programing.pptx
Linear Programing.pptx
AdnanHaleem
 

Recently uploaded (20)

ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptxISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
pankaj6188303
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptxISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
pankaj6188303
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Ad

35-algorithm-types.ppt

  • 2. Algorithm classification • Algorithms that use a similar problem-solving approach can be grouped together • This classification scheme is neither exhaustive nor disjoint • The purpose is not to be able to classify an algorithm as one type or another, but to highlight the various ways in which a problem can be attacked
  • 3. A short list of categories • Algorithm types we will consider include: – Simple recursive algorithms – Backtracking algorithms – Divide and conquer algorithms – Dynamic programming algorithms – Greedy algorithms – Branch and bound algorithms – Brute force algorithms – Randomized algorithms
  • 4. Simple recursive algorithms I • A simple recursive algorithm: – Solves the base cases directly – Recurs with a simpler subproblem – Does some extra work to convert the solution to the simpler subproblem into a solution to the given problem • I call these “simple” because several of the other algorithm types are inherently recursive
  • 5. Example recursive algorithms • To count the number of elements in a list: – If the list is empty, return zero; otherwise, – Step past the first element, and count the remaining elements in the list – Add one to the result • To test if a value occurs in a list: – If the list is empty, return false; otherwise, – If the first thing in the list is the given value, return true; otherwise – Step past the first element, and test whether the value occurs in the remainder of the list
  • 6. Backtracking algorithms • Backtracking algorithms are based on a depth-first recursive search • A backtracking algorithm: – Tests to see if a solution has been found, and if so, returns it; otherwise – For each choice that can be made at this point, • Make that choice • Recur • If the recursion returns a solution, return it – If no choices remain, return failure
  • 7. Example backtracking algorithm • To color a map with no more than four colors: – color(Country n) • If all countries have been colored (n > number of countries) return success; otherwise, • For each color c of four colors, – If country n is not adjacent to a country that has been colored c » Color country n with color c » recursivly color country n+1 » If successful, return success • Return failure (if loop exits)
  • 8. Divide and Conquer • A divide and conquer algorithm consists of two parts: – Divide the problem into smaller subproblems of the same type, and solve these subproblems recursively – Combine the solutions to the subproblems into a solution to the original problem • Traditionally, an algorithm is only called divide and conquer if it contains two or more recursive calls
  • 9. Examples • Quicksort: – Partition the array into two parts, and quicksort each of the parts – No additional work is required to combine the two sorted parts • Mergesort: – Cut the array in half, and mergesort each half – Combine the two sorted arrays into a single sorted array by merging them
  • 10. Binary tree lookup • Here’s how to look up something in a sorted binary tree: – Compare the key to the value in the root • If the two values are equal, report success • If the key is less, search the left subtree • If the key is greater, search the right subtree • This is not a divide and conquer algorithm because, although there are two recursive calls, only one is used at each level of the recursion
  • 11. Fibonacci numbers • To find the nth Fibonacci number: – If n is zero or one, return one; otherwise, – Compute fibonacci(n-1) and fibonacci(n-2) – Return the sum of these two numbers • This is an expensive algorithm – It requires O(fibonacci(n)) time – This is equivalent to exponential time, that is, O(2n)
  • 12. Dynamic programming algorithms • A dynamic programming algorithm remembers past results and uses them to find new results • Dynamic programming is generally used for optimization problems – Multiple solutions exist, need to find the “best” one – Requires “optimal substructure” and “overlapping subproblems” • Optimal substructure: Optimal solution contains optimal solutions to subproblems • Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up fashion • This differs from Divide and Conquer, where subproblems generally need not overlap
  • 13. Fibonacci numbers again • To find the nth Fibonacci number: – If n is zero or one, return one; otherwise, – Compute, or look up in a table, fibonacci(n-1) and fibonacci(n-2) – Find the sum of these two numbers – Store the result in a table and return it • Since finding the nth Fibonacci number involves finding all smaller Fibonacci numbers, the second recursive call has little work to do • The table may be preserved and used again later
  • 14. Greedy algorithms • An optimization problem is one in which you want to find, not just a solution, but the best solution • A “greedy algorithm” sometimes works well for optimization problems • A greedy algorithm works in phases: At each phase: – You take the best you can get right now, without regard for future consequences – You hope that by choosing a local optimum at each step, you will end up at a global optimum
  • 15. Example: Counting money • Suppose you want to count out a certain amount of money, using the fewest possible bills and coins • A greedy algorithm would do this would be: At each step, take the largest possible bill or coin that does not overshoot – Example: To make $6.39, you can choose: • a $5 bill • a $1 bill, to make $6 • a 25¢ coin, to make $6.25 • A 10¢ coin, to make $6.35 • four 1¢ coins, to make $6.39 • For US money, the greedy algorithm always gives the optimum solution
  • 16. A failure of the greedy algorithm • In some (fictional) monetary system, “krons” come in 1 kron, 7 kron, and 10 kron coins • Using a greedy algorithm to count out 15 krons, you would get – A 10 kron piece – Five 1 kron pieces, for a total of 15 krons – This requires six coins • A better solution would be to use two 7 kron pieces and one 1 kron piece – This only requires three coins • The greedy algorithm results in a solution, but not in an optimal solution
  • 17. Branch and bound algorithms • Branch and bound algorithms are generally used for optimization problems – As the algorithm progresses, a tree of subproblems is formed – The original problem is considered the “root problem” – A method is used to construct an upper and lower bound for a given problem – At each node, apply the bounding methods • If the bounds match, it is deemed a feasible solution to that particular subproblem • If bounds do not match, partition the problem represented by that node, and make the two subproblems into children nodes – Continue, using the best known feasible solution to trim sections of the tree, until all nodes have been solved or trimmed
  • 18. Example branch and bound algorithm • Travelling salesman problem: A salesman has to visit each of n cities (at least) once each, and wants to minimize total distance travelled – Consider the root problem to be the problem of finding the shortest route through a set of cities visiting each city once – Split the node into two child problems: • Shortest route visiting city A first • Shortest route not visiting city A first – Continue subdividing similarly as the tree grows
  • 19. Brute force algorithm • A brute force algorithm simply tries all possibilities until a satisfactory solution is found – Such an algorithm can be: • Optimizing: Find the best solution. This may require finding all solutions, or if a value for the best solution is known, it may stop when any best solution is found – Example: Finding the best path for a travelling salesman • Satisficing: Stop as soon as a solution is found that is good enough – Example: Finding a travelling salesman path that is within 10% of optimal
  • 20. Improving brute force algorithms • Often, brute force algorithms require exponential time • Various heuristics and optimizations can be used – Heuristic: A “rule of thumb” that helps you decide which possibilities to look at first – Optimization: In this case, a way to eliminate certain possibilites without fully exploring them
  • 21. Randomized algorithms • A randomized algorithm uses a random number at least once during the computation to make a decision – Example: In Quicksort, using a random number to choose a pivot – Example: Trying to factor a large prime by choosing random numbers as possible divisors