SlideShare a Scribd company logo
EVALUATION OF SMAP LEVEL 2 SOIL MOISTURE ALGORITHMS USING SMOS DATARajat Bindlish1, Thomas Jackson1, Tianjie Zhao1, Michael Cosh1, Steven Chan2, Peggy O'Neill3, Eni Njoku2, Andreas Colliander2, Yann H. Kerr4, Jiancheng Shi51USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD2Jet Propulsion Lab, Pasadena, CA3NASA Goddard Space Center, Greenbelt, MD4CESBIO, France5University of California, Santa Barbara, CA
ObjectivesReprocess SMOS observations to simulate SMAP observations at a constant incidence angle of 40o. This provides a brightness temperature data set that closely matches the observations that would be provided by the SMAP radiometer.Conduct an evaluation of the different SMAP soil moisture algorithms under consideration using the simulated data.Results will aid in the development and selection of the different land surface parameters (roughness and vegetation) and ancillary data sets.
EvaluationsAnalysis will involve several steps that will progressively move toward the actual SMAP characteristics.Evaluate the SMAP ancillary data optionsVegetationSMOS TauMODIS ClimatologyReal time MODISSoil TemperatureECMWFGMAO/MERRANCEPAlgorithm inter-comparisonsSingle Channel Algorithm (H-pol) (baseline)Single Channel Algorithm (V-pol)Dual Channel AlgorithmLPRM
MetricsUSDA ARS watershedsSMOS soil moistureECMWF soil moisture SCAN sitesOther sites from the ISMN and SMOS Cal/Val
USDA watersheds
ApproachDevelop a SMOS/SMAP data product that includes TBH and TBV at an incidence angle of 40o.Evaluate the algorithms using different ancillary dataset for soil moisture retrievals.Full SMAP retrievals using SMOS/SMAP data along with SMAP ancillary data sets on SMAP grid.Period of Analysis: Nov 2009 - May 2011
Development of SMOS/SMAP data productUses L1c dataSMOS observations from extended FOV areas can influence the overall brightness temperatures for a location (x,y)The use of observations from alias-free zones provides a more reliable TB at 40o. Observations from extended FOV are noisier.600 km1400 km
Basic steps performed in this processing:Removing the aliased portions of the SMOS orbitFiltering to remove anomalous TB observations + RFI checkInterpolation to fill-in full/dual-pol TB observations for each snapshotTransforming from antenna to Earth reference frame (Computing X-Y to H-V TB)RFI check (0<TB<320 K, TBH<TBV)Curve fitting of available TB observations at multiple incidence angles to estimate 40o TBDevelopment of SMOS/SMAP data product
Development of SMOS/SMAP data productThe SMOS/SMAP product has a narrower swath (extended FOV zones are not included)The reprocessed product has less noise. This is especially true for the edges of the swath. Higher quality TB is important for SMAP algorithm development.SMOS does not perform a multi-parameter retrieval in the EFOV zonesFull Swath ProcessingReduced Swath Processing
Baseline ResultsSingle Channel Algorithm (SCA) – baselineVegetation – MODIS climatologyLand cover – MODIS IGBPSoil temperature - ECMWFPrecipitation, Snow, Frozen soil – ECMWFVegetation parameter (b), roughness parameter (h) and single scattering albedo constant for all land covers
SCA – Global ResultsLow soil moisture over desert and arid regions (Africa, Middle East, Central Asia, and Central Australia).High values over forested areas in northern latitudes (Canada and Russia) and over portions of South America.Northern latitudes flagged due to either snow or frozen soil in June. South-East Asia, Northern South America flagged because ECMWF forecasts indicated precipitation at the time of SMOS overpass.
SCA – Watershed ResultsWide range of observed soil moisture conditions
SCA captures the range of observed soil moisture
Low bias and RMSE over LR
Most of error over LW is due to dry bias
Good agreement over WG with near zero bias
Underestimation bias over RCSCA – Watershed ResultsThe sample size is reduced due to removal of extended FOV TBs.This results in a repeat cycle of about 9-10 days.
MODIS Climatology Tau (July 1-10)MODIS derived tau has greater spatial variability than the SMOS tau
SMOS tau is lower over high vegetated areas
SMOS tau is higher over low vegetation areas

More Related Content

PPTX
IGARSS2011_Koyama_Schneider.pptx
grssieee
 
PPT
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
grssieee
 
PPTX
2013 ICEEFP 3D Tracking Error Analyses_Darin Etherington
Christa Woodley
 
PPTX
Hrbwa dmmgjm 22_oct2012
DRIscience
 
PPTX
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
grssieee
 
PPTX
Sabaghy_Workshop
Sabah Sabaghy
 
PDF
Analysis of large scale soil spectral libraries
FAO
 
IGARSS2011_Koyama_Schneider.pptx
grssieee
 
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
grssieee
 
2013 ICEEFP 3D Tracking Error Analyses_Darin Etherington
Christa Woodley
 
Hrbwa dmmgjm 22_oct2012
DRIscience
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
grssieee
 
Sabaghy_Workshop
Sabah Sabaghy
 
Analysis of large scale soil spectral libraries
FAO
 

What's hot (19)

PPTX
1_IGARSS11_2069_ONeill.pptx
grssieee
 
PPT
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
grssieee
 
PPT
2003-11-02 Regional Haze
Rudolf Husar
 
PPT
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
grssieee
 
PPT
Ian Grant_An improved satellite-based long record of Australian vegetation dy...
TERN Australia
 
PPTX
Kasper Johansen_Field and airborne data collection by AusCover: a tropical ra...
TERN Australia
 
PPTX
IGARSS_DesDyni_ALOS_dft2.pptx
grssieee
 
PPTX
Sat fc j-intro_mw_remotesensing
khondekarLutfulHassa
 
PDF
Demonstration of the High-Resolution ALEXI ET product for the NENA region, Ch...
NENAwaterscarcity
 
PDF
Dryden2011Poster
Michelle Wen
 
PDF
Current HDF Tools (1997)
The HDF-EOS Tools and Information Center
 
PPT
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
grssieee
 
PPTX
TU2.T10.1.pptx
grssieee
 
PPTX
DRI Cloud Seeding Forum - Science and Program History
DRIscience
 
PPTX
Gps measurements
Vrince Vimal
 
PPT
PARABLE POSTER
Gurpreet Singh
 
PPTX
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
Roberto Valer
 
PPTX
GPS processing techniques & some applications
Vrince Vimal
 
PPTX
Merging multiple soil moisture products for improving the accuracy in rainfal...
Luca Brocca
 
1_IGARSS11_2069_ONeill.pptx
grssieee
 
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
grssieee
 
2003-11-02 Regional Haze
Rudolf Husar
 
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
grssieee
 
Ian Grant_An improved satellite-based long record of Australian vegetation dy...
TERN Australia
 
Kasper Johansen_Field and airborne data collection by AusCover: a tropical ra...
TERN Australia
 
IGARSS_DesDyni_ALOS_dft2.pptx
grssieee
 
Sat fc j-intro_mw_remotesensing
khondekarLutfulHassa
 
Demonstration of the High-Resolution ALEXI ET product for the NENA region, Ch...
NENAwaterscarcity
 
Dryden2011Poster
Michelle Wen
 
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
grssieee
 
TU2.T10.1.pptx
grssieee
 
DRI Cloud Seeding Forum - Science and Program History
DRIscience
 
Gps measurements
Vrince Vimal
 
PARABLE POSTER
Gurpreet Singh
 
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
Roberto Valer
 
GPS processing techniques & some applications
Vrince Vimal
 
Merging multiple soil moisture products for improving the accuracy in rainfal...
Luca Brocca
 
Ad

Viewers also liked (9)

PDF
mcneills_igarss2011_penguins.pdf
grssieee
 
PDF
ceamanos_igarss.pdf
grssieee
 
PPTX
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
grssieee
 
PPTX
1-Wang-FR1020-IGARSS11.pptx
grssieee
 
PPT
IGARSS 2011.ppt
grssieee
 
PPT
IGARSS2011_SWOT_mesoscale_morrow.ppt
grssieee
 
PDF
GMatasci_Talk_DomainSeparationForEfficientAdaptiveAL_IGARSS2011.pdf
grssieee
 
PPT
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
grssieee
 
PPT
RoughSurfaceModels.ppt
grssieee
 
mcneills_igarss2011_penguins.pdf
grssieee
 
ceamanos_igarss.pdf
grssieee
 
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
grssieee
 
1-Wang-FR1020-IGARSS11.pptx
grssieee
 
IGARSS 2011.ppt
grssieee
 
IGARSS2011_SWOT_mesoscale_morrow.ppt
grssieee
 
GMatasci_Talk_DomainSeparationForEfficientAdaptiveAL_IGARSS2011.pdf
grssieee
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
grssieee
 
RoughSurfaceModels.ppt
grssieee
 
Ad

Similar to 4_bindlish_igarss2011.pptx (20)

PPTX
IGARSS_Brown_Aquarius_2011.pptx
grssieee
 
PPTX
1 IGARSS 2011 JPSS Monday Goldberg.pptx
grssieee
 
PDF
Prediction of soil properties with NIR data and site descriptors using prepro...
FAO
 
PPT
2003-12-04 Evaluation of the ASOS Light Scattering Network
Rudolf Husar
 
PPT
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
PPT
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
PPT
Jackson072311.ppt
grssieee
 
PPS
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
debasishagri
 
PPT
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
grssieee
 
PPT
FR2.L10.2: VALIDATION OF SMOS: SOME FIRST RESULTS
grssieee
 
PPT
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...
grssieee
 
PPT
NPOESSPreparatoryProjectValidationPlansfortheOzoneMappingandProfilerSuite.ppt
grssieee
 
PPT
4_BELAIR_IGARSS_SMAP_CANADA.ppt
grssieee
 
PPTX
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
grssieee
 
PPT
igarss11_rudiger.ppt
grssieee
 
PPT
igarss11_rudiger.ppt
grssieee
 
PPTX
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Integrated Carbon Observation System (ICOS)
 
PDF
Differential gps (dgps) 09 04-12
Sumant Diwakar
 
PPT
3_Igarss2011RFI.ppt
grssieee
 
PPTX
kellndorfer_WE3.T05.4.pptx
grssieee
 
IGARSS_Brown_Aquarius_2011.pptx
grssieee
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
grssieee
 
Prediction of soil properties with NIR data and site descriptors using prepro...
FAO
 
2003-12-04 Evaluation of the ASOS Light Scattering Network
Rudolf Husar
 
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
Jackson072311.ppt
grssieee
 
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
debasishagri
 
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
grssieee
 
FR2.L10.2: VALIDATION OF SMOS: SOME FIRST RESULTS
grssieee
 
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...
grssieee
 
NPOESSPreparatoryProjectValidationPlansfortheOzoneMappingandProfilerSuite.ppt
grssieee
 
4_BELAIR_IGARSS_SMAP_CANADA.ppt
grssieee
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
grssieee
 
igarss11_rudiger.ppt
grssieee
 
igarss11_rudiger.ppt
grssieee
 
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Integrated Carbon Observation System (ICOS)
 
Differential gps (dgps) 09 04-12
Sumant Diwakar
 
3_Igarss2011RFI.ppt
grssieee
 
kellndorfer_WE3.T05.4.pptx
grssieee
 

More from grssieee (20)

PDF
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
grssieee
 
PDF
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
PPTX
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
PPT
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
PPTX
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PPTX
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
PPT
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PDF
Test
grssieee
 
PPT
test 34mb wo animations
grssieee
 
PPT
Test 70MB
grssieee
 
PPT
Test 70MB
grssieee
 
PDF
2011_Fox_Tax_Worksheets.pdf
grssieee
 
PPT
DLR open house
grssieee
 
PPT
DLR open house
grssieee
 
PPT
DLR open house
grssieee
 
PPT
Tana_IGARSS2011.ppt
grssieee
 
PPT
Solaro_IGARSS_2011.ppt
grssieee
 
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
Test
grssieee
 
test 34mb wo animations
grssieee
 
Test 70MB
grssieee
 
Test 70MB
grssieee
 
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
grssieee
 
DLR open house
grssieee
 
DLR open house
grssieee
 
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
grssieee
 

Recently uploaded (20)

PPTX
Smart Infrastructure and Automation through IoT Sensors
Rejig Digital
 
PDF
solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf
AbdullahSani29
 
PDF
agentic-ai-and-the-future-of-autonomous-systems.pdf
siddharthnetsavvies
 
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
AVTRON Technologies LLC
 
PDF
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
PPTX
The Power of IoT Sensor Integration in Smart Infrastructure and Automation.pptx
Rejig Digital
 
PDF
CIFDAQ's Teaching Thursday: Moving Averages Made Simple
CIFDAQ
 
PDF
Chapter 2 Digital Image Fundamentals.pdf
Getnet Tigabie Askale -(GM)
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PDF
NewMind AI Monthly Chronicles - July 2025
NewMind AI
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
CIFDAQ's Token Spotlight: SKY - A Forgotten Giant's Comeback?
CIFDAQ
 
PDF
Shreyas_Phanse_Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
SHREYAS PHANSE
 
PDF
DevOps & Developer Experience Summer BBQ
AUGNYC
 
PDF
Software Development Company | KodekX
KodekX
 
PDF
madgavkar20181017ppt McKinsey Presentation.pdf
georgschmitzdoerner
 
PDF
Make GenAI investments go further with the Dell AI Factory - Infographic
Principled Technologies
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
Smart Infrastructure and Automation through IoT Sensors
Rejig Digital
 
solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf
AbdullahSani29
 
agentic-ai-and-the-future-of-autonomous-systems.pdf
siddharthnetsavvies
 
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
AVTRON Technologies LLC
 
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
The Power of IoT Sensor Integration in Smart Infrastructure and Automation.pptx
Rejig Digital
 
CIFDAQ's Teaching Thursday: Moving Averages Made Simple
CIFDAQ
 
Chapter 2 Digital Image Fundamentals.pdf
Getnet Tigabie Askale -(GM)
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
NewMind AI Monthly Chronicles - July 2025
NewMind AI
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
CIFDAQ's Token Spotlight: SKY - A Forgotten Giant's Comeback?
CIFDAQ
 
Shreyas_Phanse_Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
SHREYAS PHANSE
 
DevOps & Developer Experience Summer BBQ
AUGNYC
 
Software Development Company | KodekX
KodekX
 
madgavkar20181017ppt McKinsey Presentation.pdf
georgschmitzdoerner
 
Make GenAI investments go further with the Dell AI Factory - Infographic
Principled Technologies
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 

4_bindlish_igarss2011.pptx

  • 1. EVALUATION OF SMAP LEVEL 2 SOIL MOISTURE ALGORITHMS USING SMOS DATARajat Bindlish1, Thomas Jackson1, Tianjie Zhao1, Michael Cosh1, Steven Chan2, Peggy O'Neill3, Eni Njoku2, Andreas Colliander2, Yann H. Kerr4, Jiancheng Shi51USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD2Jet Propulsion Lab, Pasadena, CA3NASA Goddard Space Center, Greenbelt, MD4CESBIO, France5University of California, Santa Barbara, CA
  • 2. ObjectivesReprocess SMOS observations to simulate SMAP observations at a constant incidence angle of 40o. This provides a brightness temperature data set that closely matches the observations that would be provided by the SMAP radiometer.Conduct an evaluation of the different SMAP soil moisture algorithms under consideration using the simulated data.Results will aid in the development and selection of the different land surface parameters (roughness and vegetation) and ancillary data sets.
  • 3. EvaluationsAnalysis will involve several steps that will progressively move toward the actual SMAP characteristics.Evaluate the SMAP ancillary data optionsVegetationSMOS TauMODIS ClimatologyReal time MODISSoil TemperatureECMWFGMAO/MERRANCEPAlgorithm inter-comparisonsSingle Channel Algorithm (H-pol) (baseline)Single Channel Algorithm (V-pol)Dual Channel AlgorithmLPRM
  • 4. MetricsUSDA ARS watershedsSMOS soil moistureECMWF soil moisture SCAN sitesOther sites from the ISMN and SMOS Cal/Val
  • 6. ApproachDevelop a SMOS/SMAP data product that includes TBH and TBV at an incidence angle of 40o.Evaluate the algorithms using different ancillary dataset for soil moisture retrievals.Full SMAP retrievals using SMOS/SMAP data along with SMAP ancillary data sets on SMAP grid.Period of Analysis: Nov 2009 - May 2011
  • 7. Development of SMOS/SMAP data productUses L1c dataSMOS observations from extended FOV areas can influence the overall brightness temperatures for a location (x,y)The use of observations from alias-free zones provides a more reliable TB at 40o. Observations from extended FOV are noisier.600 km1400 km
  • 8. Basic steps performed in this processing:Removing the aliased portions of the SMOS orbitFiltering to remove anomalous TB observations + RFI checkInterpolation to fill-in full/dual-pol TB observations for each snapshotTransforming from antenna to Earth reference frame (Computing X-Y to H-V TB)RFI check (0<TB<320 K, TBH<TBV)Curve fitting of available TB observations at multiple incidence angles to estimate 40o TBDevelopment of SMOS/SMAP data product
  • 9. Development of SMOS/SMAP data productThe SMOS/SMAP product has a narrower swath (extended FOV zones are not included)The reprocessed product has less noise. This is especially true for the edges of the swath. Higher quality TB is important for SMAP algorithm development.SMOS does not perform a multi-parameter retrieval in the EFOV zonesFull Swath ProcessingReduced Swath Processing
  • 10. Baseline ResultsSingle Channel Algorithm (SCA) – baselineVegetation – MODIS climatologyLand cover – MODIS IGBPSoil temperature - ECMWFPrecipitation, Snow, Frozen soil – ECMWFVegetation parameter (b), roughness parameter (h) and single scattering albedo constant for all land covers
  • 11. SCA – Global ResultsLow soil moisture over desert and arid regions (Africa, Middle East, Central Asia, and Central Australia).High values over forested areas in northern latitudes (Canada and Russia) and over portions of South America.Northern latitudes flagged due to either snow or frozen soil in June. South-East Asia, Northern South America flagged because ECMWF forecasts indicated precipitation at the time of SMOS overpass.
  • 12. SCA – Watershed ResultsWide range of observed soil moisture conditions
  • 13. SCA captures the range of observed soil moisture
  • 14. Low bias and RMSE over LR
  • 15. Most of error over LW is due to dry bias
  • 16. Good agreement over WG with near zero bias
  • 17. Underestimation bias over RCSCA – Watershed ResultsThe sample size is reduced due to removal of extended FOV TBs.This results in a repeat cycle of about 9-10 days.
  • 18. MODIS Climatology Tau (July 1-10)MODIS derived tau has greater spatial variability than the SMOS tau
  • 19. SMOS tau is lower over high vegetated areas
  • 20. SMOS tau is higher over low vegetation areas
  • 21. No SMOS tau over dense forestsSMOS Estimated Tau (July 1-10)Vegetation Ancillary Data
  • 22. SCA using MODIS (July 1-10)SCA using SMOS Tau results in higher soil moisture (higher tau results in over correction)
  • 23. Lower soil moisture estimates over northern latitudes using MODIS NDVI (Canada, Russia) due to lower tau valuesSCA using SMOS Tau (July 1-10)Vegetation Ancillary Data
  • 24. Vegetation Ancillary Data: SMOS, MODIS-CI, and MODIS-RTUsing the SMOS tau results in greater scatter due to day to day variability in tau. Also a positive bias.
  • 25. Very little differences between MODIS climatology/realtime based tau.
  • 26. Using the MODIS tau results in near zero bias over LR and WG and underestimates over LW and RC.
  • 27. Some of the bias may be due to use of constant vegetation and roughness parameters.Vegetation Ancillary Data: SMOS, MODIS-CI, and MODIS-RT
  • 28. SCA (V pol) - ResultsSimilar to SCA (H pol) results.Low soil moisture over desert and arid regions (Africa, Middle East, Central Asia, and Central Australia).High values over forested areas in northern latitudes (Canada and Russia) and over portions of South America.
  • 29. SCA (V pol) - ResultsH pol better over LR and WG
  • 30. V pol better over LW and RC
  • 31. Choice of a constant set of global vegetation and roughness parameters results in different biases
  • 32. Vegetation parameters need to be land cover type specific
  • 33. H pol (b=0.08, ω=0.05)
  • 34. V pol (b=0.10, ω=0.06)
  • 35. Need to take a closer look at these results.A procedure was developed to reprocess SMOS TB to simulate SMAP radiometer data.The SCA algorithm was implemented using the SMOS/SMAP data set at a 40o incidence angle.SCA (MODIS) performs well in comparison with in situ observations.SCA using V pol observations performs satisfactorily. The choice of vegetation parameter can greatly affect the overall bias. Vegetation parameters need to be land cover specific to minimize bias over different domains.Initial results indicate the SMAP algorithms can meet the target accuracy requirement of 0.04 m3/m3.Further analysis and research is ongoing.This work will help in the selection and development of the SMAP passive L2 soil moisture algorithm.Summary