SlideShare a Scribd company logo
+

Rules

Mariano Rodriguez-Muro,
Free University of Bozen-Bolzano
+

Disclaimer


License


This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 License
(http://creativecommons.org/licenses/by-sa/3.0/)
+

Reading material


Chapter 7. Semantic Web Programming



Chapter 6. Foundations of Semantic Web.
+

What are rules


Means of representing knowledge



An ontology language



Can be seen as conditions statements:
if []
then []


if x is a Man and x hasChild y Father(x)
+

Why rules


Easy to understand



RDFS (and sometimes OWL) is not enough:

If a person x is the brother of somebody y, and there is z such that z is
the uncle of x, then z is the uncle of y too.
for all x,y,z, if hasBrother(x,y) & hasUncle(x,z) then hasUncle(y,z)
+
SWRL
+

7

SWRL


How can datalog and OWL be combined?



SWRL – Semantic Web Rule Language [swirl]

•

Proposal for a rule based Semantic Web Language (W3C member
submission)
http://www.w3.org/Submission/SWRL/

•

Idea: datalog rules referring to RDF classes/properties
Symbols in rules can be OWL identifiers or new symbols

•

Various further features and syntactic forms

•

Support in inference engines (very wide spread support)
+

SWRL Syntaxes



Two syntaxes:

1.

Abstract syntax based on “Extended Backus-Naur Form
notation
1. Directly translatable to a Human readable syntax (SPARQL
lie)

2.

XML Concrete Syntax
1. Parsable by existing OWL/RDF/XML parsers
2. Suitable as a exchange language for the semantic web
+

Abstract Syntax
+

Abstract Syntax Example

For the rule:

The corresponding abstract syntax:
+

Example 1

A very common use for rules is to move
property values from one individual to a
related individual
Express the fact that the style of an art
object is the same as the style of the
creator.

Artist(?x) & artistStyle(?x,?y) & Style(?y) & creator(?z,?x) ⇒ style/period(?z,?y)

Implies(Antecedent(Artist(I-variable(x))
artistStyle(I-variable(x) I-variable(y))
Style(I-variable(y))
creator(I-variable(z) I-variable(x)))
Consequent(style/period(I-variable(z) I-variable(y))))
+

RDFS as rules


Provide a translation of all RDFS axiom as rules


subClassOf



subPropertyOf



domain



range
+

Beyond RDFS


Transitivity of a property P



Reflexivity of a property P



Inverse of a property P



Equivalence of properties/classes



Sufficient conditions for class membership
+

Built ins


One of the main motivations for SWRL rules



Provide means to manipulate data


Comparisons



Mathematical transformations



List operators



Modifiers for strings, dates and times



Boolean and URI checks



URI construction
+

Built-ins examples
hasAddress(?creditCardMachine, ?ccAddress) ^
hasAddress(?customer, ?custAddress) ^
hasState(?ccAddress, ?ccState) ^
hasState(?custAddress, ?custState) ^
swrlb:equal(?custState, ?ccState) ^
hasBirthday(?customer, ?bDate) ^
swrlb:subtractYearMonthDurations(?diff, ?today, ?bDate) ^
swrlb:greaterThanOrEqual(?diff, "P18Y0M")
→ LegalCigaretteBuyer(?customer)
+

Built-ins examples
foaf:Person(?person) ^
foaf:gender(?person, "female") ^
foaf:name(?person, ?name)
→ swrlb:stringConcat(?s, "Dear Ms. ", ?name, ":") ^
hasFormalGreeting(?person, ?s)
+

Empty antecedents/consequent


Empty antecedent indicate the
consequent is ALWAYS true



State class/property
disjointness



Empty consequents indicate the
antecedent is a contradiction



State a FK-like constraint



State number-restriction
constraints



Allow to define FACTs and
CONSTRAINTS
+

XML Concrete Syntax
•

Based on OWL XML Presentation Syntax and RuleML

•

The SWRL XML syntax uses the OWL XML Ontology root
element and some of its subelements:
•

VersionInfo

•

PriorVersion

•

BackwardCompatibleWith

•

IncompatibleWith

•

Imports

•

Annotation

•

Class

•

EnumeratedClass

•SubClassOf
•EquivalentClasses
•DisjointClasses
•DatatypeProperty
•ObjectProperty
•SubPropertyOf
•EquivalentProperties
•Individual
•SameIndividual
•DifferentIndividuals
+

XML Elements (1)
•

VAR

•

IMP
+

XML Element (2)
•

Rlab

•

Body

•

Head
+

XML Elements (cont)
•

classAtom
+

XML Elements (cont)
•

datarangeAtom
+

XML Elements (cont)
•

individualPropertyAxiom
+

XML Elements (cont)
•

datavaluedPropertyAxiom
+

XML Elements (cont)
•

sameIndividualAtom
+

XML Elements (cont)
•

differentIndividualsAtom
+

XML Elements (cont)
•

builtInAtom



Built in atoms include: Comparison, Mathematical transformations, List operators, Modifiers for strings, dates and times,
Boolean and URI checks, URI constructions
+

When RDFS/Rules
RDFS/OWL


Expressivity for RDFS/OWL
is enough



Use is knowledge sharing



Application requires high
performance/uses
specialized reasoner



Application requires standard
behavior

Rules


Expressivity only captures by
rules



Use is application behavior



Application requires complex
reasoning



Application relies on a particular
inference engine only
+

Conclusion


Rules are a VERY expressive (powerful) ontology language



Rules can capture most inferences provided by RDFS (part of OWL
too)



Rules shouldn’t be abused. Performance of rule based reasoning is
suboptimal w.r.t. RDFS/OWL specialized reasoning.



Rules can be a powerful mean to capture application behiavor.



Note, although SWRL is the defacto rule language for the semantic
web, there are new standards, i.e. RIF, that might take over in the
future (further information in FSW Chapter 6)

More Related Content

PPTX
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 3 - SPARQL
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 6 - RDFS semantics, inference techniques, sesame rdfs
Mariano Rodriguez-Muro
 
PPTX
RDF data model
Jose Emilio Labra Gayo
 
PPTX
Introduction to RDF Data Model
Cesar Augusto Nogueira
 
PPTX
4 sw architectures and sparql
Mariano Rodriguez-Muro
 
PPT
Rdf Overview Presentation
Ken Varnum
 
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
SWT Lecture Session 3 - SPARQL
Mariano Rodriguez-Muro
 
SWT Lecture Session 6 - RDFS semantics, inference techniques, sesame rdfs
Mariano Rodriguez-Muro
 
RDF data model
Jose Emilio Labra Gayo
 
Introduction to RDF Data Model
Cesar Augusto Nogueira
 
4 sw architectures and sparql
Mariano Rodriguez-Muro
 
Rdf Overview Presentation
Ken Varnum
 

What's hot (20)

PPT
Introduction To RDF and RDFS
Nilesh Wagmare
 
PPT
RDF briefing
Frank van Harmelen
 
PDF
Another RDF Encoding Form
Jakob .
 
PDF
Efficient Query Answering against Dynamic RDF Databases
Alexandra Roatiș
 
PPTX
Getting triples from records: the role of ISBD
Scottish Library & Information Council (SLIC), CILIP in Scotland (CILIPS)
 
PDF
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
Jane Frazier
 
PDF
Scaling the (evolving) web data –at low cost-
WU (Vienna University of Economics and Business)
 
PPTX
Triple Stores
Stephan Volmer
 
PPT
Rdf
Imran Babar
 
PPT
Introduction to RDF
Narni Rajesh
 
PPTX
Efficient RDF Interchange (ERI) Format for RDF Data Streams
WU (Vienna University of Economics and Business)
 
PDF
Two graph data models : RDF and Property Graphs
andyseaborne
 
PPTX
RDF Data Model
Jose Emilio Labra Gayo
 
PDF
Debunking some “RDF vs. Property Graph” Alternative Facts
Neo4j
 
PDF
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
PDF
An Introduction to RDF and the Web of Data
Olaf Hartig
 
PDF
Web Data Management with RDF
M. Tamer Özsu
 
PPTX
SWT Lecture Session 9 - RDB2RDF direct mapping
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 10 R2RML Part 1
Mariano Rodriguez-Muro
 
PPT
Ist16-04 An introduction to RDF
Emanuele Della Valle
 
Introduction To RDF and RDFS
Nilesh Wagmare
 
RDF briefing
Frank van Harmelen
 
Another RDF Encoding Form
Jakob .
 
Efficient Query Answering against Dynamic RDF Databases
Alexandra Roatiș
 
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
Jane Frazier
 
Scaling the (evolving) web data –at low cost-
WU (Vienna University of Economics and Business)
 
Triple Stores
Stephan Volmer
 
Introduction to RDF
Narni Rajesh
 
Efficient RDF Interchange (ERI) Format for RDF Data Streams
WU (Vienna University of Economics and Business)
 
Two graph data models : RDF and Property Graphs
andyseaborne
 
RDF Data Model
Jose Emilio Labra Gayo
 
Debunking some “RDF vs. Property Graph” Alternative Facts
Neo4j
 
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
An Introduction to RDF and the Web of Data
Olaf Hartig
 
Web Data Management with RDF
M. Tamer Özsu
 
SWT Lecture Session 9 - RDB2RDF direct mapping
Mariano Rodriguez-Muro
 
SWT Lecture Session 10 R2RML Part 1
Mariano Rodriguez-Muro
 
Ist16-04 An introduction to RDF
Emanuele Della Valle
 
Ad

Viewers also liked (7)

PPTX
SWT Lab 2
Mariano Rodriguez-Muro
 
PDF
2011.118 1233
swaipnew
 
PPTX
SWT Lab 5
Mariano Rodriguez-Muro
 
PPTX
SWT Lab 3
Mariano Rodriguez-Muro
 
PPTX
SWT Lab 1
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 8 - Inference in jena
Mariano Rodriguez-Muro
 
PPTX
7 advanced uses of rdfs
Mariano Rodriguez-Muro
 
2011.118 1233
swaipnew
 
SWT Lecture Session 8 - Inference in jena
Mariano Rodriguez-Muro
 
7 advanced uses of rdfs
Mariano Rodriguez-Muro
 
Ad

Similar to SWT Lecture Session 8 - Rules (20)

PPT
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Daniel Sonntag
 
PPT
Linked Data Tutorial
Sören Auer
 
PDF
Vital AI: Big Data Modeling
Vital.AI
 
PPTX
CSHALS 2010 W3C Semanic Web Tutorial
LeeFeigenbaum
 
PPTX
Semantic Web: introduction & overview
Amit Sheth
 
PDF
Gerry McNicol Graph Databases
Gerry McNicol
 
PPTX
The Empirical Turn in Knowledge Representation
Frank van Harmelen
 
PPT
Web 3 Mark Greaves
Mediabistro
 
PPT
Jpl presentation
Rama Bastola
 
PPT
Jpl presentation
Rama Bastola
 
PPT
Jpl presentation
Rama Bastola
 
PPTX
RDFa Semantic Web
Rob Paok
 
ODP
State of the Semantic Web
Ivan Herman
 
PPTX
Searching on Intent: Knowledge Graphs, Personalization, and Contextual Disamb...
Trey Grainger
 
PPT
Semantics in Financial Services -David Newman
Peter Berger
 
PPTX
Querying the Web of Data
Rinke Hoekstra
 
PDF
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
PPT
Information Extraction and Linked Data Cloud
Dhaval Thakker
 
PPT
Web Services Catalog
Rudolf Husar
 
PPTX
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
Armin Haller
 
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Daniel Sonntag
 
Linked Data Tutorial
Sören Auer
 
Vital AI: Big Data Modeling
Vital.AI
 
CSHALS 2010 W3C Semanic Web Tutorial
LeeFeigenbaum
 
Semantic Web: introduction & overview
Amit Sheth
 
Gerry McNicol Graph Databases
Gerry McNicol
 
The Empirical Turn in Knowledge Representation
Frank van Harmelen
 
Web 3 Mark Greaves
Mediabistro
 
Jpl presentation
Rama Bastola
 
Jpl presentation
Rama Bastola
 
Jpl presentation
Rama Bastola
 
RDFa Semantic Web
Rob Paok
 
State of the Semantic Web
Ivan Herman
 
Searching on Intent: Knowledge Graphs, Personalization, and Contextual Disamb...
Trey Grainger
 
Semantics in Financial Services -David Newman
Peter Berger
 
Querying the Web of Data
Rinke Hoekstra
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
Information Extraction and Linked Data Cloud
Dhaval Thakker
 
Web Services Catalog
Rudolf Husar
 
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
Armin Haller
 

More from Mariano Rodriguez-Muro (17)

PPTX
SWT Lecture Session 11 - R2RML part 2
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 7 - Advanced uses of RDFS
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 5 - RDFS
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 4 - SW architectures and SPARQL
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 4 - Sesame
Mariano Rodriguez-Muro
 
PPTX
SWT Lecture Session 1 - Introduction
Mariano Rodriguez-Muro
 
PPTX
ontop: A tutorial
Mariano Rodriguez-Muro
 
PDF
Stanford'12 Intro to Ontology Based Data Access for RDBMS through query rewri...
Mariano Rodriguez-Muro
 
PDF
Introduction to query rewriting optimisation with dependencies
Mariano Rodriguez-Muro
 
PDF
OXFORD'13 Optimising OWL 2 QL query rewriring
Mariano Rodriguez-Muro
 
PDF
OWLED'12 Quest
Mariano Rodriguez-Muro
 
PDF
ODBASE'08 dl-lite explanations
Mariano Rodriguez-Muro
 
PDF
IMAS'08 obda plugin
Mariano Rodriguez-Muro
 
PDF
DL'12 dl-lite explanations
Mariano Rodriguez-Muro
 
PDF
DL'12 mastro at work
Mariano Rodriguez-Muro
 
PDF
AMW'11 dependencies-sem index-t-mappings
Mariano Rodriguez-Muro
 
SWT Lecture Session 11 - R2RML part 2
Mariano Rodriguez-Muro
 
SWT Lecture Session 7 - Advanced uses of RDFS
Mariano Rodriguez-Muro
 
SWT Lecture Session 5 - RDFS
Mariano Rodriguez-Muro
 
SWT Lecture Session 4 - SW architectures and SPARQL
Mariano Rodriguez-Muro
 
SWT Lecture Session 4 - Sesame
Mariano Rodriguez-Muro
 
SWT Lecture Session 1 - Introduction
Mariano Rodriguez-Muro
 
ontop: A tutorial
Mariano Rodriguez-Muro
 
Stanford'12 Intro to Ontology Based Data Access for RDBMS through query rewri...
Mariano Rodriguez-Muro
 
Introduction to query rewriting optimisation with dependencies
Mariano Rodriguez-Muro
 
OXFORD'13 Optimising OWL 2 QL query rewriring
Mariano Rodriguez-Muro
 
OWLED'12 Quest
Mariano Rodriguez-Muro
 
ODBASE'08 dl-lite explanations
Mariano Rodriguez-Muro
 
IMAS'08 obda plugin
Mariano Rodriguez-Muro
 
DL'12 dl-lite explanations
Mariano Rodriguez-Muro
 
DL'12 mastro at work
Mariano Rodriguez-Muro
 
AMW'11 dependencies-sem index-t-mappings
Mariano Rodriguez-Muro
 

Recently uploaded (20)

PPTX
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
PPTX
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
PPTX
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
PPTX
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
PPTX
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PPTX
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
DOCX
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
PPTX
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
PDF
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
PDF
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
DOCX
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
PPTX
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
PPTX
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PDF
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
DOCX
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 

SWT Lecture Session 8 - Rules

  • 2. + Disclaimer  License  This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License (http://creativecommons.org/licenses/by-sa/3.0/)
  • 3. + Reading material  Chapter 7. Semantic Web Programming  Chapter 6. Foundations of Semantic Web.
  • 4. + What are rules  Means of representing knowledge  An ontology language  Can be seen as conditions statements: if [] then []  if x is a Man and x hasChild y Father(x)
  • 5. + Why rules  Easy to understand  RDFS (and sometimes OWL) is not enough: If a person x is the brother of somebody y, and there is z such that z is the uncle of x, then z is the uncle of y too. for all x,y,z, if hasBrother(x,y) & hasUncle(x,z) then hasUncle(y,z)
  • 7. + 7 SWRL  How can datalog and OWL be combined?  SWRL – Semantic Web Rule Language [swirl] • Proposal for a rule based Semantic Web Language (W3C member submission) http://www.w3.org/Submission/SWRL/ • Idea: datalog rules referring to RDF classes/properties Symbols in rules can be OWL identifiers or new symbols • Various further features and syntactic forms • Support in inference engines (very wide spread support)
  • 8. + SWRL Syntaxes  Two syntaxes: 1. Abstract syntax based on “Extended Backus-Naur Form notation 1. Directly translatable to a Human readable syntax (SPARQL lie) 2. XML Concrete Syntax 1. Parsable by existing OWL/RDF/XML parsers 2. Suitable as a exchange language for the semantic web
  • 10. + Abstract Syntax Example For the rule: The corresponding abstract syntax:
  • 11. + Example 1 A very common use for rules is to move property values from one individual to a related individual Express the fact that the style of an art object is the same as the style of the creator. Artist(?x) & artistStyle(?x,?y) & Style(?y) & creator(?z,?x) ⇒ style/period(?z,?y) Implies(Antecedent(Artist(I-variable(x)) artistStyle(I-variable(x) I-variable(y)) Style(I-variable(y)) creator(I-variable(z) I-variable(x))) Consequent(style/period(I-variable(z) I-variable(y))))
  • 12. + RDFS as rules  Provide a translation of all RDFS axiom as rules  subClassOf  subPropertyOf  domain  range
  • 13. + Beyond RDFS  Transitivity of a property P  Reflexivity of a property P  Inverse of a property P  Equivalence of properties/classes  Sufficient conditions for class membership
  • 14. + Built ins  One of the main motivations for SWRL rules  Provide means to manipulate data  Comparisons  Mathematical transformations  List operators  Modifiers for strings, dates and times  Boolean and URI checks  URI construction
  • 15. + Built-ins examples hasAddress(?creditCardMachine, ?ccAddress) ^ hasAddress(?customer, ?custAddress) ^ hasState(?ccAddress, ?ccState) ^ hasState(?custAddress, ?custState) ^ swrlb:equal(?custState, ?ccState) ^ hasBirthday(?customer, ?bDate) ^ swrlb:subtractYearMonthDurations(?diff, ?today, ?bDate) ^ swrlb:greaterThanOrEqual(?diff, "P18Y0M") → LegalCigaretteBuyer(?customer)
  • 16. + Built-ins examples foaf:Person(?person) ^ foaf:gender(?person, "female") ^ foaf:name(?person, ?name) → swrlb:stringConcat(?s, "Dear Ms. ", ?name, ":") ^ hasFormalGreeting(?person, ?s)
  • 17. + Empty antecedents/consequent  Empty antecedent indicate the consequent is ALWAYS true  State class/property disjointness  Empty consequents indicate the antecedent is a contradiction  State a FK-like constraint  State number-restriction constraints  Allow to define FACTs and CONSTRAINTS
  • 18. + XML Concrete Syntax • Based on OWL XML Presentation Syntax and RuleML • The SWRL XML syntax uses the OWL XML Ontology root element and some of its subelements: • VersionInfo • PriorVersion • BackwardCompatibleWith • IncompatibleWith • Imports • Annotation • Class • EnumeratedClass •SubClassOf •EquivalentClasses •DisjointClasses •DatatypeProperty •ObjectProperty •SubPropertyOf •EquivalentProperties •Individual •SameIndividual •DifferentIndividuals
  • 27. + XML Elements (cont) • builtInAtom  Built in atoms include: Comparison, Mathematical transformations, List operators, Modifiers for strings, dates and times, Boolean and URI checks, URI constructions
  • 28. + When RDFS/Rules RDFS/OWL  Expressivity for RDFS/OWL is enough  Use is knowledge sharing  Application requires high performance/uses specialized reasoner  Application requires standard behavior Rules  Expressivity only captures by rules  Use is application behavior  Application requires complex reasoning  Application relies on a particular inference engine only
  • 29. + Conclusion  Rules are a VERY expressive (powerful) ontology language  Rules can capture most inferences provided by RDFS (part of OWL too)  Rules shouldn’t be abused. Performance of rule based reasoning is suboptimal w.r.t. RDFS/OWL specialized reasoning.  Rules can be a powerful mean to capture application behiavor.  Note, although SWRL is the defacto rule language for the semantic web, there are new standards, i.e. RIF, that might take over in the future (further information in FSW Chapter 6)

Editor's Notes

  • #5: soundness, completeness, termintion
  • #6: soundness, completeness, termintion
  • #29: soundness, completeness, termintion
  • #30: soundness, completeness, termintion