SlideShare a Scribd company logo
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
160
A Common Random Fixed Point Theorem for Rational Ineqality
in Hilbert Space using Integral Type Mappings
RAMAKANT BHARDWAJ
Associate Professor in Truba Institute of Engineering & Information Technology, Bhopal (M.P)
Mr. PIYUSH M. PATEL*
Research Scholar of CMJ University, Shillong (Meghalaya), pmpatel551986@gmail.com
drrkbhardwaj100@gmail.com
*Corresponding author
ABSTRACT: The object of this paper is to obtain a common random fixed point theorem for four continuous
random operators defined on a non empty closed subset of a separable Hilbert space for integral type mapping.
Key wards: common fixed point, rational expression, hilbert space random variable
1. INTRODUCTION AND PRELIMINARIES
Impact of fixed point theory in different branches of mathematics and its applications is immense. The first
result on fixed points for Contractive type mapping was the much celebrated Banach’s contraction principle by S.
Banach [9] in 1922. In the general setting of complete metric space, this theorem runs as the follows,
Theorem 1.1 (Banach’s contraction principle) Let (X,d)be a complete metric space, c (0,1)∈ and f: X→X be
a mapping such that for each x, y ∈X, d (fx,fy) cd x,y≤ Then f has a unique fixed point a ∈X, such that for
each x ∈ X, lim n
n f x a→∞ = .
After the classical result, Kannan [7] gave a subsequently new contractive mapping to prove the fixed point
theorem. Since then a number of mathematicians have been worked on fixed point theory dealing with mappings
satisfying various type of contractive conditions.
In 2002, A. Branciari [1] analyzed the existence of fixed point for mapping f defined on a complete metric
space (X,d) satisfying a general contractive condition of integral type.
Theorem 1.2 (Branciari) Let (X,d) be a complete metric space, c (0,1)∈ and let f: X→X be a mapping such
that for each x, y ∈ X,
:[0, ) [0, )ξ +∞ → +∞ is a LesbesgueWhere
integrable mapping which is summable on each compact subset of[0, )+∞ , non negative, and such that for each
ϵ > o, ( )
0
t dtξ
∈
∫ , then f has a unique fixed point a ∈ X such that for each x∈X, lim
n
f x an =→∞ . After the
paper of Branciari, a lot of a research works have been carried out on generalizing contractive conditions of
integral type for different contractive mappings satisfying various known properties. A fine work has been done
by Rhoades [2] extending the result of Branciari by replacing the condition [1.2] by the following
The aim of this
paper is to
generalize some mixed type of contractive conditions to the mapping and then a pair of mappings satisfying
general contractive mappings such as Kannan type [7], Chatrterjee type [8], Zamfirescu type [11], etc.
In recent years, the study of random fixed points has attracted much attention. Some of the recent literatures in
random fixed point may be noted in Rhoades [3], and Binayak S. Choudhary [4].In this paper, we construct a
sequence of measurable functions and consider its convergence to the common unique random fixed point of
four continuous random operators defined on a non-empty closed subset of a separable Hilbert space. For the
purpose of obtaining the random fixed point of the four continuous random operators. We have used a rational
inequality (from B. Fisher [5] and S.S. Pagey [10]) and the parallelogram law. Throughout this paper, (Ω, Σ)
denotes a measurable space consisting of a set Ω and sigma algebra Σ of subsets of Ω, H stands for a separable
Hilbert space and C is a nonempty closed subset of H.
d (fx,fy) ( , )
( ) ( )0 0
d x y
t dt t dtξ ξ≤∫ ∫
0 0
( , ) ( , )max ( , ), ( , ), ( , ),( , ) 2
( ) ( )
d x fy d y fxd x y d x fx d y fyd fx fy
t dt t dtξ ξ
 
 
 
  
+
≤∫ ∫
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
161
Definition 1.3. A function :F CΩ → is said to be measurable if
1
( )f B C−
∩ ∈∑ for every Borel subset B
of H.
Definition 1.4. A function :F C CΩ× → is said to be a random operator if (., ) :F x CΩ → is measurable
for every x C∈
Definition 1.5. A measurable :g CΩ → is said to be a random fixed point of the random operator
:F C CΩ× → if ( , ( )) ( )F t g t g t= for all t ∈Ω
Definition 1.6. A random operator :F C CΩ× → is said to be continuous if for fixed t ∈Ω ,
( ,.) :F t C C→ is continuous.
Condition (A). Four mappings E, F, T, S: C → C, where C is a non-empty closed subset of a Hilbert space H, is
said to satisfy condition (A) if
ES = SE, FT = TF, E (H) ⊂ T (H) and F (H) ⊆ S (H) --------------------------- (1)
0 0
0
0
0
2 2 2
2
2 2
2 2 2
21
2 2
2
( ) ( )1
( )2
( )
3
( )4
2 2
with , 0 and , , , 01 2 3 4
Sx Ex Ty Fy Ex Ty
E Fx y Sx Ty Ex Ty
Sx Ex Ex Ty Ty Fy
Sx Ex Ex Ty T Fy y
Sx Ex Ty Fy
Sx Ty
t dt t dt
t dt
t dt
t dt
Sx Ty Sx Ty Ex Ty
ξ α ξ
α ξ
α ξ
α ξ
α α α α
 
 
 
− − + −
− − + −
− + − + −
+ − ⋅ − ⋅ −
− + −
−
≤
+
+
+
≠ − + − ≠ ≥
−
∫ ∫
∫
∫
∫
(2)− − − − − − − − − − − − − − − − − − − − −
where ξ ∶
ℛ+
→ ℛ+
is a lebesgue- integrable mapping which is summable on each compact subset of ℛ+
, non negative, and
such that for each for
each ϵ > o ,
( )
0
t d tξ
∈
∫
. )3(
2
1
1
2
1
321
432
−−−−−−−−−−−−−−−−−−−−−





++−
++
p
ααα
ααα
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
162
2. MAIN RESULTS
Theorem 2.1. Let C be a non-empty closed subset of a separable Hilbert space H . Let , ,E F S and T be
four continuous random operators defined on C such that for, t ∈Ω ( ,.), ( ,.), ( ,.), ( ,.) :E t F t T t S t C C→
satisfy condition (A).Then , ,E F S and T have unique common random fixed point.
Proof: Let the function :g CΩ → be arbitrary measurable function. By (1), there exists a function
1 :g CΩ → such that 1 0( , ( )) ( , ( ))T t g t E t g t= fort ∈Ω and for this function 1 :g CΩ → , we can choose
another function 2 :g CΩ → such that 1 2( , ( ) ( , ( ))F t g t S t g t= for t ∈Ω , and so on. Inductively, we can
define a sequence of functions fort ∈Ω , { }( )ny t such that
2 2 1 2
2 1 2 1 2 1
( ) ( , ( )) ( , ( )) an d
( ) ( , ( )) ( , ( ))
fo r 1, 2 , 3 ........
(4 )
n n n
n n n
y t T t g t E t g t
y t S t g t F t g t
t n
+
+ + +
= =
= =
∈ Ω =
− − − − − − − − − − − − − − − −
From condition (A), we have for, t ∈Ω
0 0
0
2 2 2
( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 2 2 1 2 1 2 2 1
2
( , ( )) ( , ( )) ( , ( )) ( ,2 2 1 2 2
2 2
( ) ( ) ( , ( )) ( , ( ))2 2 1 2 2 1
( ) ( )
( )1
S t g t E t g t T t g t F t g t E t g t T t g tn n n n n n
S t g t T t g t E t g t T t gn n n n
y t y t E t g t F t g tn n n n
d d
d
ξ λ λ ξ λ λ
α ξ λ λ
 
 
 
− − + −+ + +
− + −+
− −+ +
=
≤
∫ ∫
0
0
2
( ))1
2 2 2
( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 2 2 2 1 2 1 2 1
1 ( , ( )) ( , ( )) . ( , ( )) ( , ( )) . ( , ( )) ( , ( ))2 2 2 2 1 2 1 2 1
( , ( )2 2
( )2
( )3
t
S t g t E t g t E t g t T t g t T t g t F t g tn n n n n n
S t g t E t g t E t g t T t g t T t g t F t g tn n n n n n
S t g tn
d
d
α ξ λ λ
α ξ λ λ
+
− + − + −+ + +
+ − − −+ + +
+
+
+
∫
∫
0
2
) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1
2
( , ( )) ( , ( ))2 2 1
by(2)( )4
E t g t T t g t F t g tn n n
S t g t T t g tn n
dα ξ λ λ
− + −+ + +
− +
+
∫
∫
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
163
0
0
2 2 2
( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 2 1 2 2
2 2
( ) ( ) ( ) ( )2 1 2 2 2
2 2 2
( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 2 2 2 1
2 2
1 ( ) ( ) . ( ) ( ) . ( ) (2 1 2 2 2 2 2 1
1
2
( )
( )
y t y t y t y t y t y tn n n n n n
y t y t y t y tn n n n
y t y t y t y t y t y tn n n n n n
y t y t y t y t y t yn n n n n n
d
d
α
α
ξ λ λ
ξ λ λ
 
 
 
− − + −− +
− + −−
− + − + −− +
+ − − −− +
=
+
∫
0
0
0 0
0
2
)
2 2
( ) ( ) ( ) ( )2 1 2 2 2 1
2 2
( ) ( ) ( ) ( )2 1 2 2 2 1
2 2
( ) ( ) ( ) ( )2 2 1 2 1 2
2
( ) ( )2 2 1
3
2
( )
( ) by (4)4
( ) ( ) ( ) ( )1 2 3 2 3 4
( )
t
y t y t y t y tn n n n
y t y t y t y tn n n n
y t y t y t y tn n n n
y t y tn n
d
d
d d
d
α
α
ξ λ λ
α ξ λ λ
α α α ξ λ λ α α α ξ λ λ
ξ λ λ
− + −+ +
− + −+ +
− −+ −
− +
+
≤
+
= + + + + +
⇒
∫
∫
∫
∫ ∫
∫ 0
0 0
2
( ) ( )2 1 2
( ) ( ) ( ) ( )2 2 1 2 1 2
3 4
1 1 2 3
1
2
2 3 4
1 1 2 3
( )
( ) ( )
y t y tn n
y t y t y t y tn n n n
d
d d
α α
α α α
α α α
α α α
ξ λ λ
ξ λ λ ξ λ λ
−−
− −+ −
+ +
− + +
+ +
⇒ ≤
− + +
 
 
 
 
 
 
∫
∫ ∫
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
164
In integral
Now, we shall prove that for t ∈Ω , ( )ny t is a Cauchy sequence. For this for Common random fixed point
theorem every positive integer p, we have
0 0
( ) ( ) ( ) ( )2 2 1 2 1 2
( ) ( )
1
2
12 3 4where by (3)
1 21 2 3
y t y t y t y tn n n n
Kd d
K
ξ λ λ ξ λ λ
α α α
α α α
− −+ −
≤
+ +
=
− + +
 
 
 
∫ ∫
p
0 0
( ) ( ) ( ) ( )1 0 1
for
(5)
( ) ( )
y t y t y t y tn n
K td dξ λ λ ξ λ λ
− −+
′′⇒ ≤ ∈Ω
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∫ ∫
0 0
0
0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )1 1 2 2 1
( ) ( ) ( ) ( ) ... ( ) ( )1 1 2 1
( ) ( )0 111
...
2
1
( ) ( )
( )
( )
y t y t y t y t y t y t y t y t y tn n p n n pn n n n n p
y t y t y t y t y t y tn n pn n n n p
y t y t
n pn n
k k k
n
k k k
d d
d
d
ξ λ λ ξ λ λ
ξ λ λ
ξ λ λ
− − + − + + + −+ ++ + + + + −
− + − + + − ++ + + + −
−
=
≤
+ −+
≤ + + +
= + +
  
∫ ∫
∫
∫
( )
0
0
0
( ) ( )0 1
( ) ( )0 1
( ) ( )
1
...
1
0 for
(6)
( )
( )
( )
y t y t
y t y t
y t y tn n p
p
k
n
k
k
Lim t
n
d
d
d
ξ λ λ
ξ λ λ
ξ λ λ
−
−
− +
−
+ +
≤
−
⇒ = ∈Ω
→∞
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  ∫
∫
∫
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
165
From equation (6), it follows that for, { }( )ny t is a Cauchy sequence and hence is convergent in closed subset C
of Hilbert space H.
For t ∈Ω , let
Again, closeness of C gives that g is a function from C to C. and consequently the subsequences
{ }2( , ( ))nE t g t
,
{ }2 1( , ( ))nF t g t+ { }2 1( , ( ))nT t g t+
and{S(t,g2n+2(t))}of
{ }( )ny t
for t ∈Ω , also converges to the
( )y t .........(*) and continuity of E,F, T and S gives
(From (1)) ------------------------------- (8)
Existence of random fixed point: Consider for t ∈Ω
{ }
0
( )
lim ( ) (7)( )
y tn
y t
n
t dtξ = − − − − − − − − − − − − − − − − − − − − − −
→∞ ∫
0 0 0 0
0 0 0 0
0
( , ( , ( ))) ( , ( )) ( , ( , ( ))) ( , ( ))
( , ( , ( ))) ( , ( )) ( , ( , ( ))) ( , ( ))
( , ( ))
and
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
,
,
E t S t g t E t y t S t E t g t S t y tn n
F t T t g t F t y t T t F t g t T t y tn n
E t y t
d d
d
d d d d
d d d d
d d
λ λ
λ
ξ λ λ ξ λ λ ξ λ λ ξ λ λ
ξ λ λ ξ λ λ ξ λ λ ξ λ λ
ξ λ λ ξ λ λ
→ →
→ →
=
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ 0 0 0
( , ( )), ( , ( )) ( , ( ))
, ( ) ( ) for
S t y t F t y t T t y t
d d tξ λ λ ξ λ λ= ∈Ω∫ ∫ ∫
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
166
0
0
0 0
0
2
( , ( )) ( ))
2
( , ( )) ( ) ( ) ( ))2 1 2 1
2 2
( , ( )) ( , ( )) ( ) ( ))2 1 2 1
22
( , ( )) ( , ( )) ( , ( )) ( , ( )) (2 1 2 1
2 1
( )
( )
2 ( ) 2 ( ) by(4)
( )
E t y t y t
E t y t y t y t y tn n
E t y t F t g t y t y tn n
S t y t E t y t T t g t F t g t E tn n
d
d
d d
dα
ξ λ λ
ξ λ λ
ξ λ λ ξ λ λ
ξ λ λ
−
− + −+ +
− −+ +
− − ++ +
≤
=
= +
∫
∫
∫ ∫
0
2
, ( )) ( , ( ))2 1
2 2
( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1
2 22
( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1
1 ( , ( )) ( , ( )) . ( , ( )) ( , 22 2 ( )
y t T t g tn
S t y t T t g t E t y t T t g tn n
S t y t E t y t E t y t T t g t T t g t F t g tn n n
S t y t E t y t E t y t T t g dα ξ λ λ
 
 
 
− +
− + −+ +
− + − + −+ + +
+ − −+
∫
0
( )) . ( , ( )) ( , ( ))1 2 1 2 1
2
( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1
2 3 ( )
t T t g t F t g tn n n
S t y t E t g t T t g t F t g tn n n
dα ξ λ λ
−+ + +
− + −+ + +
+
∫
∫
0 0
2 2
( , ( )) ( , ( )) ( ) ( )2 1 2 1
2 2 ( )4 ( )
S t y t T t g t y t y tn n
ddα ξ λ λξ λ λ
− −+ +
+ +
∫ ∫
Therefore for t ∈Ω
( )
0 0
0
0
2 2
( , ( )) ( )) ( , ( )) ( ))
2
( , ( )) ( ))
2
( , ( )) ( ))
2 4
1 2 04
( ) ( )
( )
1
( ) 0 as 4
2
E t y t y t E t y t y t
E t y t y t
E t y t y t
d d
d
d
α
α
ξ λ λ ξ λ λ
ξ λ λ
ξ λ λ α
− −
−
−
≤
⇒ − ≤
⇒ =
∫ ∫
∫
∫ p
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
167
Common random fixed point theorem:
0 0
( , ( )) ( )
( ) ( )
E t y t y t
d dξ λ λ ξ λ λ=∫ ∫ for t ∈Ω ----------------------------------(9)
From (8) and (9) we have for all
0 0 0
( , ( )) ( ) ( , ( ))
( ) ( ) ( )
E t y t y t S t y t
d d dξ λ λ ξ λ λ ξ λ λ= =
∫ ∫ ∫ ------------------------------ (10)
In an exactly similar way, we can prove that for all
0 0 0
( , ( )) ( ) ( , ( ))
( ) ( ) ( )
F t y t y t T t y t
d d dξ λ λ ξ λ λ ξ λ λ= =
∫ ∫ ∫ -------------------------------- (11)
Again, if A : Ω×C → C is a continuous random operator on a nonempty closed subset C of a separable Hilbert
space H, then for any measurable function f : Ω → C, the function h(t) = A(t, f(t)) is also measurable [4].
It follows from the construction of { }( )ny t for t ∈Ω , (by (4)) and above consideration that { }( )ny t is a
sequence of measurable function. From (7), it follows that ( )y t for t ∈Ω , is also measurable function. This fact
along with (10) and (11) shows that g: Ω → C is a common random fixed point of E, F, S and T.
Uniqueness: Let h: Ω → C be another random fixed point common to
E, F, T and S, that is, for t ∈Ω ,
( , ( )) ( ), ( , ( )) ( ), ( , ( )) ( ) ( , ( )) ( )
(12)
F t h t h t F t h t h t T t h t h t and S t h t h t= = = =
− − − − − − − − − − − − − − − − −
Then for t ∈Ω
t ∈Ω
t ∈Ω
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
168
2
( ) ( )
0
0
0
2 2 2
( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))
2 2
( , ( )) ( , ( )) ( , ( )) ( , ( ))
2 2
( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))
2
( )
( )1
( )
g t h t
S t g t E t g t T t h t F t h t E t g t T t h t
S t g t T t h t E t g t T t h t
S t g t E t g t E t g t T t h t T t h t F
d
d
dα
ξ λ λ
α ξ λ λ
ξ λ λ
−
 
  
− − + −
− + −
− + − + −
+
≤
∫
∫
2
2
( , ( )) ( , ( )) ( , ( )) ( , ( ))
0
( , ( )) ( , ( ))
0
2
( , ( ))
1 ( , ( )) ( , ( )) . ( , ( )) ( , ( )) . ( , ( )) ( , ( ))
4
( )
3
( )
S t g t E t g t T t h t F t h t
S t g t T t h t
t h t
S t g t E t g t E t g t T t h t T t h t F t h t
d
dα
α ξ λ λ
ξ λ λ
− + −
−
+ − − −
+
+
∫
∫
∫
2 2
2
2
( ) ( ) ( ) ( )
0
( ) ( )
0
( ) ( )
0
( ) ( )
0 0
( ) ( ) by (12)
4
1 ( ) 0
4
1
( ) 0 (as )
4
2
( ) ( ) for t
( ) ( ) for t
( - )
g t h t g t h t
g t h t
g t h t
g t h t
d d
d
d
d d
g t h t
ξ λ λ α ξ λ λ
α ξ λ λ
ξ λ λ α
ξ λ λ ξ λ λ
− −
−
−
⇒ ≤
⇒ ≤
⇒
⇒ ∈ Ω
⇒ = ∈ Ω
=
=
∫ ∫
∫
∫
∫ ∫
p
Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
169
This completes the proof of the theorem (2.1).
ACKNOWLEDGEMENTS: The authors are thankful to Prof. B.E.Rhoades [Indiana University, Bloomington,
USA] S.S.Pagey and Neeraj malviya for providing us necessary Literature of fixed point theory.
References:
[1] A. Branciari, A fixed point theorem for mappings satisfying a general con- tractive condition of integral
type, Int.J.Math.Math.Sci, 29(2002), no.9, 531 - 536.
[2] B.E Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral
type, International Journal of Mathematics and Mathematical Sciences, 63, (2003), 4007 - 4013.
[3] B.E. Rhoades, Iteration to obtain random solutions and fixed points of oper-
ators in uniformly convex Banach spaces, Soochow Journal of mathematics ,27(4) (2001), 401 – 404
[4] Binayak S. Choudhary, A common unique fixed point theorem for two ran- dom operators in Hilbert space,
IJMMS 32(3)(2002), 177 - 182.
[5] B. Fisher, Common fixed point and constant mapping satisfying a rational inequality, Math. Sem. Kobe Univ,
6(1978), 29 - 35.
[6] C.J. Himmelberg, Measurable relations, Fund Math, 87 (1975), 53 - 72.
[7] R. Kannan, Some results on fixed points, Bull.Calcutta Math. Soc. 60(1968), 71-76[8] S.K.Chatterjea, Fixed
point theorems, C.R.Acad.Bulgare Sci. 25(1972), 727- 730.
[9] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrals, Fund.
Math.3, (1922)133181 (French).
[10] S.S. Pagey, Shalu Srivastava and Smita Nair, Common fixed point theorem for rational inequality in a quasi
2-metric space, Jour. Pure Math., 22(2005), 99 - 104.
[11] T.Zamfrescu, Fixed point theorems in metric spaces, Arch.Math.(Basel) 23(1972), 292-298.
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.
More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org
CALL FOR PAPERS
The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. There’s no deadline for
submission. Prospective authors of IISTE journals can find the submission
instruction on the following page: http://www.iiste.org/Journals/
The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

More Related Content

What's hot (17)

PDF
SPSF02 - Graphical Data Representation
Syeilendra Pramuditya
 
PDF
Common fixed point theorems with continuously subcompatible mappings in fuzz...
Alexander Decker
 
PPT
Compfuncdiff
dianenz
 
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
PDF
Radix-3 Algorithm for Realization of Discrete Fourier Transform
IJERA Editor
 
PDF
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
DOCX
El6303 solu 3 f15 1
Sreekaanth Ganesan
 
PDF
Application of hierarchical matrices for partial inverse
Alexander Litvinenko
 
PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
BRNSS Publication Hub
 
PDF
A small introduction into H-matrices which I gave for my colleagues
Alexander Litvinenko
 
PDF
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PyData
 
PDF
A fixed point result in banach spaces
Alexander Decker
 
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Carlon Baird
 
PDF
Paper id 71201914
IJRAT
 
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
PDF
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Alexander Litvinenko
 
PDF
Pure Mathematics Unit 2 - Textbook
Rushane Barnes
 
SPSF02 - Graphical Data Representation
Syeilendra Pramuditya
 
Common fixed point theorems with continuously subcompatible mappings in fuzz...
Alexander Decker
 
Compfuncdiff
dianenz
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
IJERA Editor
 
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
El6303 solu 3 f15 1
Sreekaanth Ganesan
 
Application of hierarchical matrices for partial inverse
Alexander Litvinenko
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
BRNSS Publication Hub
 
A small introduction into H-matrices which I gave for my colleagues
Alexander Litvinenko
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PyData
 
A fixed point result in banach spaces
Alexander Decker
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Carlon Baird
 
Paper id 71201914
IJRAT
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Alexander Litvinenko
 
Pure Mathematics Unit 2 - Textbook
Rushane Barnes
 

Similar to A common random fixed point theorem for rational ineqality in hilbert space using integral type mappings (20)

PDF
Common fixed point theorems for random operators in hilbert space
Alexander Decker
 
PDF
Neutrosophic Soft Topological Spaces on New Operations
IJSRED
 
PDF
Smoothed Particle Galerkin Method Formulation.pdf
keansheng
 
PDF
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
IOSR Journals
 
PDF
Au4201315330
IJERA Editor
 
PDF
On Some Double Integrals of H -Function of Two Variables and Their Applications
IJERA Editor
 
PDF
Stereographic Circular Normal Moment Distribution
mathsjournal
 
PDF
Common fixed point and weak commuting mappings
Alexander Decker
 
PDF
Fixed point result in menger space with ea property
Alexander Decker
 
PDF
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
PDF
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
PDF
Fitted Operator Finite Difference Method for Singularly Perturbed Parabolic C...
ieijjournal
 
PDF
Measures of different reliability parameters for a complex redundant system u...
Alexander Decker
 
PDF
A05330107
IOSR-JEN
 
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
 
PDF
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
mathsjournal
 
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
 
PDF
Common random fixed point theorems of contractions in
Alexander Decker
 
PDF
Integral calculus formula sheet
AjEcuacion
 
Common fixed point theorems for random operators in hilbert space
Alexander Decker
 
Neutrosophic Soft Topological Spaces on New Operations
IJSRED
 
Smoothed Particle Galerkin Method Formulation.pdf
keansheng
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
IOSR Journals
 
Au4201315330
IJERA Editor
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
IJERA Editor
 
Stereographic Circular Normal Moment Distribution
mathsjournal
 
Common fixed point and weak commuting mappings
Alexander Decker
 
Fixed point result in menger space with ea property
Alexander Decker
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
Fitted Operator Finite Difference Method for Singularly Perturbed Parabolic C...
ieijjournal
 
Measures of different reliability parameters for a complex redundant system u...
Alexander Decker
 
A05330107
IOSR-JEN
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
 
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
mathsjournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
 
Common random fixed point theorems of contractions in
Alexander Decker
 
Integral calculus formula sheet
AjEcuacion
 
Ad

More from Alexander Decker (20)

PDF
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
PDF
A validation of the adverse childhood experiences scale in
Alexander Decker
 
PDF
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
PDF
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
PDF
A unique common fixed point theorems in generalized d
Alexander Decker
 
PDF
A trends of salmonella and antibiotic resistance
Alexander Decker
 
PDF
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
PDF
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
PDF
A therapy for physical and mental fitness of school children
Alexander Decker
 
PDF
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
PDF
A systematic evaluation of link budget for
Alexander Decker
 
PDF
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
PDF
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
PDF
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
PDF
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
PDF
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
PDF
A survey on challenges to the media cloud
Alexander Decker
 
PDF
A survey of provenance leveraged
Alexander Decker
 
PDF
A survey of private equity investments in kenya
Alexander Decker
 
PDF
A study to measures the financial health of
Alexander Decker
 
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
A validation of the adverse childhood experiences scale in
Alexander Decker
 
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
A unique common fixed point theorems in generalized d
Alexander Decker
 
A trends of salmonella and antibiotic resistance
Alexander Decker
 
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
A therapy for physical and mental fitness of school children
Alexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
A systematic evaluation of link budget for
Alexander Decker
 
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
A survey on challenges to the media cloud
Alexander Decker
 
A survey of provenance leveraged
Alexander Decker
 
A survey of private equity investments in kenya
Alexander Decker
 
A study to measures the financial health of
Alexander Decker
 
Ad

Recently uploaded (20)

PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PPTX
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PDF
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 

A common random fixed point theorem for rational ineqality in hilbert space using integral type mappings

  • 1. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 160 A Common Random Fixed Point Theorem for Rational Ineqality in Hilbert Space using Integral Type Mappings RAMAKANT BHARDWAJ Associate Professor in Truba Institute of Engineering & Information Technology, Bhopal (M.P) Mr. PIYUSH M. PATEL* Research Scholar of CMJ University, Shillong (Meghalaya), [email protected] [email protected] *Corresponding author ABSTRACT: The object of this paper is to obtain a common random fixed point theorem for four continuous random operators defined on a non empty closed subset of a separable Hilbert space for integral type mapping. Key wards: common fixed point, rational expression, hilbert space random variable 1. INTRODUCTION AND PRELIMINARIES Impact of fixed point theory in different branches of mathematics and its applications is immense. The first result on fixed points for Contractive type mapping was the much celebrated Banach’s contraction principle by S. Banach [9] in 1922. In the general setting of complete metric space, this theorem runs as the follows, Theorem 1.1 (Banach’s contraction principle) Let (X,d)be a complete metric space, c (0,1)∈ and f: X→X be a mapping such that for each x, y ∈X, d (fx,fy) cd x,y≤ Then f has a unique fixed point a ∈X, such that for each x ∈ X, lim n n f x a→∞ = . After the classical result, Kannan [7] gave a subsequently new contractive mapping to prove the fixed point theorem. Since then a number of mathematicians have been worked on fixed point theory dealing with mappings satisfying various type of contractive conditions. In 2002, A. Branciari [1] analyzed the existence of fixed point for mapping f defined on a complete metric space (X,d) satisfying a general contractive condition of integral type. Theorem 1.2 (Branciari) Let (X,d) be a complete metric space, c (0,1)∈ and let f: X→X be a mapping such that for each x, y ∈ X, :[0, ) [0, )ξ +∞ → +∞ is a LesbesgueWhere integrable mapping which is summable on each compact subset of[0, )+∞ , non negative, and such that for each ϵ > o, ( ) 0 t dtξ ∈ ∫ , then f has a unique fixed point a ∈ X such that for each x∈X, lim n f x an =→∞ . After the paper of Branciari, a lot of a research works have been carried out on generalizing contractive conditions of integral type for different contractive mappings satisfying various known properties. A fine work has been done by Rhoades [2] extending the result of Branciari by replacing the condition [1.2] by the following The aim of this paper is to generalize some mixed type of contractive conditions to the mapping and then a pair of mappings satisfying general contractive mappings such as Kannan type [7], Chatrterjee type [8], Zamfirescu type [11], etc. In recent years, the study of random fixed points has attracted much attention. Some of the recent literatures in random fixed point may be noted in Rhoades [3], and Binayak S. Choudhary [4].In this paper, we construct a sequence of measurable functions and consider its convergence to the common unique random fixed point of four continuous random operators defined on a non-empty closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point of the four continuous random operators. We have used a rational inequality (from B. Fisher [5] and S.S. Pagey [10]) and the parallelogram law. Throughout this paper, (Ω, Σ) denotes a measurable space consisting of a set Ω and sigma algebra Σ of subsets of Ω, H stands for a separable Hilbert space and C is a nonempty closed subset of H. d (fx,fy) ( , ) ( ) ( )0 0 d x y t dt t dtξ ξ≤∫ ∫ 0 0 ( , ) ( , )max ( , ), ( , ), ( , ),( , ) 2 ( ) ( ) d x fy d y fxd x y d x fx d y fyd fx fy t dt t dtξ ξ          + ≤∫ ∫
  • 2. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 161 Definition 1.3. A function :F CΩ → is said to be measurable if 1 ( )f B C− ∩ ∈∑ for every Borel subset B of H. Definition 1.4. A function :F C CΩ× → is said to be a random operator if (., ) :F x CΩ → is measurable for every x C∈ Definition 1.5. A measurable :g CΩ → is said to be a random fixed point of the random operator :F C CΩ× → if ( , ( )) ( )F t g t g t= for all t ∈Ω Definition 1.6. A random operator :F C CΩ× → is said to be continuous if for fixed t ∈Ω , ( ,.) :F t C C→ is continuous. Condition (A). Four mappings E, F, T, S: C → C, where C is a non-empty closed subset of a Hilbert space H, is said to satisfy condition (A) if ES = SE, FT = TF, E (H) ⊂ T (H) and F (H) ⊆ S (H) --------------------------- (1) 0 0 0 0 0 2 2 2 2 2 2 2 2 2 21 2 2 2 ( ) ( )1 ( )2 ( ) 3 ( )4 2 2 with , 0 and , , , 01 2 3 4 Sx Ex Ty Fy Ex Ty E Fx y Sx Ty Ex Ty Sx Ex Ex Ty Ty Fy Sx Ex Ex Ty T Fy y Sx Ex Ty Fy Sx Ty t dt t dt t dt t dt t dt Sx Ty Sx Ty Ex Ty ξ α ξ α ξ α ξ α ξ α α α α       − − + − − − + − − + − + − + − ⋅ − ⋅ − − + − − ≤ + + + ≠ − + − ≠ ≥ − ∫ ∫ ∫ ∫ ∫ (2)− − − − − − − − − − − − − − − − − − − − − where ξ ∶ ℛ+ → ℛ+ is a lebesgue- integrable mapping which is summable on each compact subset of ℛ+ , non negative, and such that for each for each ϵ > o , ( ) 0 t d tξ ∈ ∫ . )3( 2 1 1 2 1 321 432 −−−−−−−−−−−−−−−−−−−−−      ++− ++ p ααα ααα
  • 3. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 162 2. MAIN RESULTS Theorem 2.1. Let C be a non-empty closed subset of a separable Hilbert space H . Let , ,E F S and T be four continuous random operators defined on C such that for, t ∈Ω ( ,.), ( ,.), ( ,.), ( ,.) :E t F t T t S t C C→ satisfy condition (A).Then , ,E F S and T have unique common random fixed point. Proof: Let the function :g CΩ → be arbitrary measurable function. By (1), there exists a function 1 :g CΩ → such that 1 0( , ( )) ( , ( ))T t g t E t g t= fort ∈Ω and for this function 1 :g CΩ → , we can choose another function 2 :g CΩ → such that 1 2( , ( ) ( , ( ))F t g t S t g t= for t ∈Ω , and so on. Inductively, we can define a sequence of functions fort ∈Ω , { }( )ny t such that 2 2 1 2 2 1 2 1 2 1 ( ) ( , ( )) ( , ( )) an d ( ) ( , ( )) ( , ( )) fo r 1, 2 , 3 ........ (4 ) n n n n n n y t T t g t E t g t y t S t g t F t g t t n + + + + = = = = ∈ Ω = − − − − − − − − − − − − − − − − From condition (A), we have for, t ∈Ω 0 0 0 2 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 2 2 1 2 1 2 2 1 2 ( , ( )) ( , ( )) ( , ( )) ( ,2 2 1 2 2 2 2 ( ) ( ) ( , ( )) ( , ( ))2 2 1 2 2 1 ( ) ( ) ( )1 S t g t E t g t T t g t F t g t E t g t T t g tn n n n n n S t g t T t g t E t g t T t gn n n n y t y t E t g t F t g tn n n n d d d ξ λ λ ξ λ λ α ξ λ λ       − − + −+ + + − + −+ − −+ + = ≤ ∫ ∫ 0 0 2 ( ))1 2 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 2 2 2 1 2 1 2 1 1 ( , ( )) ( , ( )) . ( , ( )) ( , ( )) . ( , ( )) ( , ( ))2 2 2 2 1 2 1 2 1 ( , ( )2 2 ( )2 ( )3 t S t g t E t g t E t g t T t g t T t g t F t g tn n n n n n S t g t E t g t E t g t T t g t T t g t F t g tn n n n n n S t g tn d d α ξ λ λ α ξ λ λ + − + − + −+ + + + − − −+ + + + + + ∫ ∫ 0 2 ) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1 2 ( , ( )) ( , ( ))2 2 1 by(2)( )4 E t g t T t g t F t g tn n n S t g t T t g tn n dα ξ λ λ − + −+ + + − + + ∫ ∫
  • 4. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 163 0 0 2 2 2 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 2 1 2 2 2 2 ( ) ( ) ( ) ( )2 1 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 2 2 2 1 2 2 1 ( ) ( ) . ( ) ( ) . ( ) (2 1 2 2 2 2 2 1 1 2 ( ) ( ) y t y t y t y t y t y tn n n n n n y t y t y t y tn n n n y t y t y t y t y t y tn n n n n n y t y t y t y t y t yn n n n n n d d α α ξ λ λ ξ λ λ       − − + −− + − + −− − + − + −− + + − − −− + = + ∫ 0 0 0 0 0 2 ) 2 2 ( ) ( ) ( ) ( )2 1 2 2 2 1 2 2 ( ) ( ) ( ) ( )2 1 2 2 2 1 2 2 ( ) ( ) ( ) ( )2 2 1 2 1 2 2 ( ) ( )2 2 1 3 2 ( ) ( ) by (4)4 ( ) ( ) ( ) ( )1 2 3 2 3 4 ( ) t y t y t y t y tn n n n y t y t y t y tn n n n y t y t y t y tn n n n y t y tn n d d d d d α α ξ λ λ α ξ λ λ α α α ξ λ λ α α α ξ λ λ ξ λ λ − + −+ + − + −+ + − −+ − − + + ≤ + = + + + + + ⇒ ∫ ∫ ∫ ∫ ∫ ∫ 0 0 0 2 ( ) ( )2 1 2 ( ) ( ) ( ) ( )2 2 1 2 1 2 3 4 1 1 2 3 1 2 2 3 4 1 1 2 3 ( ) ( ) ( ) y t y tn n y t y t y t y tn n n n d d d α α α α α α α α α α α ξ λ λ ξ λ λ ξ λ λ −− − −+ − + + − + + + + ⇒ ≤ − + +             ∫ ∫ ∫
  • 5. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 164 In integral Now, we shall prove that for t ∈Ω , ( )ny t is a Cauchy sequence. For this for Common random fixed point theorem every positive integer p, we have 0 0 ( ) ( ) ( ) ( )2 2 1 2 1 2 ( ) ( ) 1 2 12 3 4where by (3) 1 21 2 3 y t y t y t y tn n n n Kd d K ξ λ λ ξ λ λ α α α α α α − −+ − ≤ + + = − + +       ∫ ∫ p 0 0 ( ) ( ) ( ) ( )1 0 1 for (5) ( ) ( ) y t y t y t y tn n K td dξ λ λ ξ λ λ − −+ ′′⇒ ≤ ∈Ω −−−−−−−−−−−−−−−−−−−−−−−−−−−− ∫ ∫ 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )1 1 2 2 1 ( ) ( ) ( ) ( ) ... ( ) ( )1 1 2 1 ( ) ( )0 111 ... 2 1 ( ) ( ) ( ) ( ) y t y t y t y t y t y t y t y t y tn n p n n pn n n n n p y t y t y t y t y t y tn n pn n n n p y t y t n pn n k k k n k k k d d d d ξ λ λ ξ λ λ ξ λ λ ξ λ λ − − + − + + + −+ ++ + + + + − − + − + + − ++ + + + − − = ≤ + −+ ≤ + + + = + +    ∫ ∫ ∫ ∫ ( ) 0 0 0 ( ) ( )0 1 ( ) ( )0 1 ( ) ( ) 1 ... 1 0 for (6) ( ) ( ) ( ) y t y t y t y t y t y tn n p p k n k k Lim t n d d d ξ λ λ ξ λ λ ξ λ λ − − − + − + + ≤ − ⇒ = ∈Ω →∞ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−   ∫ ∫ ∫
  • 6. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 165 From equation (6), it follows that for, { }( )ny t is a Cauchy sequence and hence is convergent in closed subset C of Hilbert space H. For t ∈Ω , let Again, closeness of C gives that g is a function from C to C. and consequently the subsequences { }2( , ( ))nE t g t , { }2 1( , ( ))nF t g t+ { }2 1( , ( ))nT t g t+ and{S(t,g2n+2(t))}of { }( )ny t for t ∈Ω , also converges to the ( )y t .........(*) and continuity of E,F, T and S gives (From (1)) ------------------------------- (8) Existence of random fixed point: Consider for t ∈Ω { } 0 ( ) lim ( ) (7)( ) y tn y t n t dtξ = − − − − − − − − − − − − − − − − − − − − − − →∞ ∫ 0 0 0 0 0 0 0 0 0 ( , ( , ( ))) ( , ( )) ( , ( , ( ))) ( , ( )) ( , ( , ( ))) ( , ( )) ( , ( , ( ))) ( , ( )) ( , ( )) and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , E t S t g t E t y t S t E t g t S t y tn n F t T t g t F t y t T t F t g t T t y tn n E t y t d d d d d d d d d d d d d λ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ → → → → = ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 0 0 0 ( , ( )), ( , ( )) ( , ( )) , ( ) ( ) for S t y t F t y t T t y t d d tξ λ λ ξ λ λ= ∈Ω∫ ∫ ∫
  • 7. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 166 0 0 0 0 0 2 ( , ( )) ( )) 2 ( , ( )) ( ) ( ) ( ))2 1 2 1 2 2 ( , ( )) ( , ( )) ( ) ( ))2 1 2 1 22 ( , ( )) ( , ( )) ( , ( )) ( , ( )) (2 1 2 1 2 1 ( ) ( ) 2 ( ) 2 ( ) by(4) ( ) E t y t y t E t y t y t y t y tn n E t y t F t g t y t y tn n S t y t E t y t T t g t F t g t E tn n d d d d dα ξ λ λ ξ λ λ ξ λ λ ξ λ λ ξ λ λ − − + −+ + − −+ + − − ++ + ≤ = = + ∫ ∫ ∫ ∫ 0 2 , ( )) ( , ( ))2 1 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 22 ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1 1 ( , ( )) ( , ( )) . ( , ( )) ( , 22 2 ( ) y t T t g tn S t y t T t g t E t y t T t g tn n S t y t E t y t E t y t T t g t T t g t F t g tn n n S t y t E t y t E t y t T t g dα ξ λ λ       − + − + −+ + − + − + −+ + + + − −+ ∫ 0 ( )) . ( , ( )) ( , ( ))1 2 1 2 1 2 ( , ( )) ( , ( )) ( , ( )) ( , ( ))2 1 2 1 2 1 2 3 ( ) t T t g t F t g tn n n S t y t E t g t T t g t F t g tn n n dα ξ λ λ −+ + + − + −+ + + + ∫ ∫ 0 0 2 2 ( , ( )) ( , ( )) ( ) ( )2 1 2 1 2 2 ( )4 ( ) S t y t T t g t y t y tn n ddα ξ λ λξ λ λ − −+ + + + ∫ ∫ Therefore for t ∈Ω ( ) 0 0 0 0 2 2 ( , ( )) ( )) ( , ( )) ( )) 2 ( , ( )) ( )) 2 ( , ( )) ( )) 2 4 1 2 04 ( ) ( ) ( ) 1 ( ) 0 as 4 2 E t y t y t E t y t y t E t y t y t E t y t y t d d d d α α ξ λ λ ξ λ λ ξ λ λ ξ λ λ α − − − − ≤ ⇒ − ≤ ⇒ = ∫ ∫ ∫ ∫ p
  • 8. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 167 Common random fixed point theorem: 0 0 ( , ( )) ( ) ( ) ( ) E t y t y t d dξ λ λ ξ λ λ=∫ ∫ for t ∈Ω ----------------------------------(9) From (8) and (9) we have for all 0 0 0 ( , ( )) ( ) ( , ( )) ( ) ( ) ( ) E t y t y t S t y t d d dξ λ λ ξ λ λ ξ λ λ= = ∫ ∫ ∫ ------------------------------ (10) In an exactly similar way, we can prove that for all 0 0 0 ( , ( )) ( ) ( , ( )) ( ) ( ) ( ) F t y t y t T t y t d d dξ λ λ ξ λ λ ξ λ λ= = ∫ ∫ ∫ -------------------------------- (11) Again, if A : Ω×C → C is a continuous random operator on a nonempty closed subset C of a separable Hilbert space H, then for any measurable function f : Ω → C, the function h(t) = A(t, f(t)) is also measurable [4]. It follows from the construction of { }( )ny t for t ∈Ω , (by (4)) and above consideration that { }( )ny t is a sequence of measurable function. From (7), it follows that ( )y t for t ∈Ω , is also measurable function. This fact along with (10) and (11) shows that g: Ω → C is a common random fixed point of E, F, S and T. Uniqueness: Let h: Ω → C be another random fixed point common to E, F, T and S, that is, for t ∈Ω , ( , ( )) ( ), ( , ( )) ( ), ( , ( )) ( ) ( , ( )) ( ) (12) F t h t h t F t h t h t T t h t h t and S t h t h t= = = = − − − − − − − − − − − − − − − − − Then for t ∈Ω t ∈Ω t ∈Ω
  • 9. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 168 2 ( ) ( ) 0 0 0 2 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) 2 ( ) ( )1 ( ) g t h t S t g t E t g t T t h t F t h t E t g t T t h t S t g t T t h t E t g t T t h t S t g t E t g t E t g t T t h t T t h t F d d dα ξ λ λ α ξ λ λ ξ λ λ −      − − + − − + − − + − + − + ≤ ∫ ∫ 2 2 ( , ( )) ( , ( )) ( , ( )) ( , ( )) 0 ( , ( )) ( , ( )) 0 2 ( , ( )) 1 ( , ( )) ( , ( )) . ( , ( )) ( , ( )) . ( , ( )) ( , ( )) 4 ( ) 3 ( ) S t g t E t g t T t h t F t h t S t g t T t h t t h t S t g t E t g t E t g t T t h t T t h t F t h t d dα α ξ λ λ ξ λ λ − + − − + − − − + + ∫ ∫ ∫ 2 2 2 2 ( ) ( ) ( ) ( ) 0 ( ) ( ) 0 ( ) ( ) 0 ( ) ( ) 0 0 ( ) ( ) by (12) 4 1 ( ) 0 4 1 ( ) 0 (as ) 4 2 ( ) ( ) for t ( ) ( ) for t ( - ) g t h t g t h t g t h t g t h t g t h t d d d d d d g t h t ξ λ λ α ξ λ λ α ξ λ λ ξ λ λ α ξ λ λ ξ λ λ − − − − ⇒ ≤ ⇒ ≤ ⇒ ⇒ ∈ Ω ⇒ = ∈ Ω = = ∫ ∫ ∫ ∫ ∫ ∫ p
  • 10. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 169 This completes the proof of the theorem (2.1). ACKNOWLEDGEMENTS: The authors are thankful to Prof. B.E.Rhoades [Indiana University, Bloomington, USA] S.S.Pagey and Neeraj malviya for providing us necessary Literature of fixed point theory. References: [1] A. Branciari, A fixed point theorem for mappings satisfying a general con- tractive condition of integral type, Int.J.Math.Math.Sci, 29(2002), no.9, 531 - 536. [2] B.E Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 63, (2003), 4007 - 4013. [3] B.E. Rhoades, Iteration to obtain random solutions and fixed points of oper- ators in uniformly convex Banach spaces, Soochow Journal of mathematics ,27(4) (2001), 401 – 404 [4] Binayak S. Choudhary, A common unique fixed point theorem for two ran- dom operators in Hilbert space, IJMMS 32(3)(2002), 177 - 182. [5] B. Fisher, Common fixed point and constant mapping satisfying a rational inequality, Math. Sem. Kobe Univ, 6(1978), 29 - 35. [6] C.J. Himmelberg, Measurable relations, Fund Math, 87 (1975), 53 - 72. [7] R. Kannan, Some results on fixed points, Bull.Calcutta Math. Soc. 60(1968), 71-76[8] S.K.Chatterjea, Fixed point theorems, C.R.Acad.Bulgare Sci. 25(1972), 727- 730. [9] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrals, Fund. Math.3, (1922)133181 (French). [10] S.S. Pagey, Shalu Srivastava and Smita Nair, Common fixed point theorem for rational inequality in a quasi 2-metric space, Jour. Pure Math., 22(2005), 99 - 104. [11] T.Zamfrescu, Fixed point theorems in metric spaces, Arch.Math.(Basel) 23(1972), 292-298.
  • 11. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org CALL FOR PAPERS The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar