SlideShare a Scribd company logo
A Context-Based Semantics
for SPARQL Property Paths
over the Web
Olaf Hartig and Giuseppe Pirrò
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 2
Puzzle
Give me the URL of every Web document that
mentions its own URL somewhere in its text.
A Context-Based Semantics
for SPARQL Property Paths
over the Web
Olaf Hartig and Giuseppe Pirrò
Disclaimer:
This work is not about reasoning.
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 4
Property Path Pattern (PP Pattern)
(α, path, β)
variable, IRI, literal (or
bnode), respectively
property path expression
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 5
Property Path Expression
(α, path, β)
variable, IRI, literal (or
bnode), respectively
path := p | (IRI)
^path | (inverse)
path / path | (concatenation)
(path | path) | (alternative)
(path)* (recursive concatenation)
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 6
path := p | (IRI)
^path | (inverse)
path / path | (concatenation)
(path | path) | (alternative)
(path)* (recursive concatenation)
Example
( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x )
( ex:bob , foaf:knows , ex:alice )
( ex:alice , foaf:made , a:doc1 )
( e:objA , foaf:maker , ex:alice )
Data:
μ1 = { ?x → a:doc1 }
μ2 = { ?x → e:objA }
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 7
Example
( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x )
( ex:bob , foaf:knows , ex:alice )
( ex:alice , foaf:made , a:doc1 )
( e:objA , foaf:maker , ex:alice )
G =
⟦P⟧G = { μ1, μ2 }
P =
μ1 = { ?x → a:doc1 }
μ2 = { ?x → e:objA }
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 8
Example
( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x )
( ex:bob , foaf:knows , ex:alice )
( ex:alice , foaf:made , a:doc1 )
( e:objA , foaf:maker , ex:alice )
P =
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 9
Example
( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x )
P =
( ex:alice , foaf:made , a:doc1 )
( ex:bob , foaf:knows , ex:alice )
( e:objA , foaf:maker , ex:alice )
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 10
Example
( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x )
P =
⟦P⟧W = ??
What is the expected result of executing P
as a query over the Web of Linked Data?
Can this expected result be computed in practice?
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 11
Contributions
● Formal definition of a context-based query
semantics to use PP patterns (and SPARQL
patterns constructed thereof) as queries over
Linked Data in a well-defined manner.
● Web-safeness property of such queries (i.e.,
the fundamental feasibility of executing such a
query in practice over the WWW)
● Decidable syntactic property to identify
queries that are Web safe
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 12
⟦(u1, p, ?x)⟧W =
Context-Based Query Semantics
…
(u1, p, u2)
(u1, p, u3)
...
{ μ1, μ2 }
μ1 = { ?x → u2 }
μ2 = { ?x → u3 }
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 13
⟦(u1, p / q , ?x)⟧W =
Context-Based Query Semantics
…
(u1, p, u2)
(u1, p, u3)
...
{ μ1, μ2 }
μ1 = { ?x → b }
μ2 = { ?x → a }
…
(u3, q, a)
...
…
(u2, q, b)
...
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 14
Context-Based Query Semantics
= { μ={ ?x → u } | for every URI u s.t.
(u, p, a) in ctxt(u) }
⟦(?x, p, a)⟧W
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 15
Main Result
Theorem: A PP-based SPARQL pattern P is
Web-safe if cbvars( P | Ø ) = vars(P),
...where cbvars( P | X ) denotes the set of
conditionally bounded variables of P for a
given set X of variables (see paper).
● Open problem:
– Note that the condition is sufficient only.
– Is there an alternative condition that is sufficient
and also necessary (and decidable)?
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 16
Summary
● Formal definition of a context-based query
semantics to use PP patterns (and SPARQL
patterns constructed thereof) as queries over
Linked Data in a well-defined manner.
● Web-safeness property of such queries (i.e.,
the fundamental feasibility of executing such a
query in practice over the WWW)
● Decidable syntactic property to identify
queries that are Web safe
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 17
Backup Slides
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 18
Web-Safeness
A PP-based SPARQL pattern P is Web-safe if
there exists an algorithm that, for any Web of
Linked Data W = (D, adoc), computes ⟦P⟧W
without assuming an a-priori availability of
information about the sets D and dom(adoc).
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 19
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 20
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
Pex = ( (u1, p, ?x) AND (?x, q, ?y) )
cbvars( Pex | Ø ) = ?
Example
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 21
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
Pex = ( (u1, p, ?x) AND (?x, q, ?y) )
cbvars( P1 | Ø ) = {?x} cbvars( P2 | Ø ) = Ø
Example
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 22
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
Pex = ( (u1, p, ?x) AND (?x, q, ?y) )
cbvars( P1 | Ø ) = {?x} cbvars( P2 | sbvars(P1) )
Example
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 23
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
Pex = ( (u1, p, ?x) AND (?x, q, ?y) )
cbvars( P1 | Ø ) = {?x} cbvars( P2 | {?x} ) = {?x,?y}
Example
A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 24
Conditionally Bounded Variables
● cbvars( P | X ) denotes the set of conditionally
bounded variables of P for a given set X of variables
● Defined recursively for all types of patterns
– If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1)
and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then
cbvars( P | X ) = vars(P).
– If P is (u, p, β), then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P).
– If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø.
– etc.
Pex = ( (u1, p, ?x) AND (?x, q, ?y) )
cbvars( Pex | Ø ) = vars(Pex) = {?x,?y}
Example

More Related Content

What's hot (20)

Getty Vocabulary Program LOD: Ontologies and Semantic Representation
Getty Vocabulary Program LOD: Ontologies and Semantic RepresentationGetty Vocabulary Program LOD: Ontologies and Semantic Representation
Getty Vocabulary Program LOD: Ontologies and Semantic Representation
Vladimir Alexiev, PhD, PMP
 
Debunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative FactsDebunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative Facts
Neo4j
 
Information-Rich Programming in F# with Semantic Data
Information-Rich Programming in F# with Semantic DataInformation-Rich Programming in F# with Semantic Data
Information-Rich Programming in F# with Semantic Data
Steffen Staab
 
DS2014: Feature selection in hierarchical feature spaces
DS2014: Feature selection in hierarchical feature spacesDS2014: Feature selection in hierarchical feature spaces
DS2014: Feature selection in hierarchical feature spaces
Petar Ristoski
 
Semantic Variation Graphs the case for RDF & SPARQL
Semantic Variation Graphs the case for RDF & SPARQLSemantic Variation Graphs the case for RDF & SPARQL
Semantic Variation Graphs the case for RDF & SPARQL
Jerven Bolleman
 
Jesús Barrasa
Jesús BarrasaJesús Barrasa
Jesús Barrasa
Connected Data World
 
RDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data MiningRDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data Mining
Petar Ristoski
 
A year on the Semantic Web @ W3C
A year on the Semantic Web @ W3CA year on the Semantic Web @ W3C
A year on the Semantic Web @ W3C
Ivan Herman
 
Machine Learning Methods for Analysing and Linking RDF Data
Machine Learning Methods for Analysing and Linking RDF DataMachine Learning Methods for Analysing and Linking RDF Data
Machine Learning Methods for Analysing and Linking RDF Data
Jens Lehmann
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
Rinke Hoekstra
 
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
VALA Tech Camp 2017: Intro to Wikidata & SPARQLVALA Tech Camp 2017: Intro to Wikidata & SPARQL
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
Jane Frazier
 
Wi2015 - Clustering of Linked Open Data - the LODeX tool
Wi2015 - Clustering of Linked Open Data - the LODeX toolWi2015 - Clustering of Linked Open Data - the LODeX tool
Wi2015 - Clustering of Linked Open Data - the LODeX tool
Laura Po
 
SPARQL Cheat Sheet
SPARQL Cheat SheetSPARQL Cheat Sheet
SPARQL Cheat Sheet
LeeFeigenbaum
 
The SPARQL Anything project
The SPARQL Anything projectThe SPARQL Anything project
The SPARQL Anything project
Enrico Daga
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphs
andyseaborne
 
Knowledge graph construction with a façade - The SPARQL Anything Project
Knowledge graph construction with a façade - The SPARQL Anything ProjectKnowledge graph construction with a façade - The SPARQL Anything Project
Knowledge graph construction with a façade - The SPARQL Anything Project
Enrico Daga
 
File Format Benchmarks - Avro, JSON, ORC, & Parquet
File Format Benchmarks - Avro, JSON, ORC, & ParquetFile Format Benchmarks - Avro, JSON, ORC, & Parquet
File Format Benchmarks - Avro, JSON, ORC, & Parquet
Owen O'Malley
 
Trying SPARQL Anything with MEI
Trying SPARQL Anything with MEITrying SPARQL Anything with MEI
Trying SPARQL Anything with MEI
Enrico Daga
 
Linked Open Data Visualization
Linked Open Data VisualizationLinked Open Data Visualization
Linked Open Data Visualization
Laura Po
 
Semantics reloaded
Semantics reloadedSemantics reloaded
Semantics reloaded
Steffen Staab
 
Getty Vocabulary Program LOD: Ontologies and Semantic Representation
Getty Vocabulary Program LOD: Ontologies and Semantic RepresentationGetty Vocabulary Program LOD: Ontologies and Semantic Representation
Getty Vocabulary Program LOD: Ontologies and Semantic Representation
Vladimir Alexiev, PhD, PMP
 
Debunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative FactsDebunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative Facts
Neo4j
 
Information-Rich Programming in F# with Semantic Data
Information-Rich Programming in F# with Semantic DataInformation-Rich Programming in F# with Semantic Data
Information-Rich Programming in F# with Semantic Data
Steffen Staab
 
DS2014: Feature selection in hierarchical feature spaces
DS2014: Feature selection in hierarchical feature spacesDS2014: Feature selection in hierarchical feature spaces
DS2014: Feature selection in hierarchical feature spaces
Petar Ristoski
 
Semantic Variation Graphs the case for RDF & SPARQL
Semantic Variation Graphs the case for RDF & SPARQLSemantic Variation Graphs the case for RDF & SPARQL
Semantic Variation Graphs the case for RDF & SPARQL
Jerven Bolleman
 
RDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data MiningRDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data Mining
Petar Ristoski
 
A year on the Semantic Web @ W3C
A year on the Semantic Web @ W3CA year on the Semantic Web @ W3C
A year on the Semantic Web @ W3C
Ivan Herman
 
Machine Learning Methods for Analysing and Linking RDF Data
Machine Learning Methods for Analysing and Linking RDF DataMachine Learning Methods for Analysing and Linking RDF Data
Machine Learning Methods for Analysing and Linking RDF Data
Jens Lehmann
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
Rinke Hoekstra
 
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
VALA Tech Camp 2017: Intro to Wikidata & SPARQLVALA Tech Camp 2017: Intro to Wikidata & SPARQL
VALA Tech Camp 2017: Intro to Wikidata & SPARQL
Jane Frazier
 
Wi2015 - Clustering of Linked Open Data - the LODeX tool
Wi2015 - Clustering of Linked Open Data - the LODeX toolWi2015 - Clustering of Linked Open Data - the LODeX tool
Wi2015 - Clustering of Linked Open Data - the LODeX tool
Laura Po
 
The SPARQL Anything project
The SPARQL Anything projectThe SPARQL Anything project
The SPARQL Anything project
Enrico Daga
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphs
andyseaborne
 
Knowledge graph construction with a façade - The SPARQL Anything Project
Knowledge graph construction with a façade - The SPARQL Anything ProjectKnowledge graph construction with a façade - The SPARQL Anything Project
Knowledge graph construction with a façade - The SPARQL Anything Project
Enrico Daga
 
File Format Benchmarks - Avro, JSON, ORC, & Parquet
File Format Benchmarks - Avro, JSON, ORC, & ParquetFile Format Benchmarks - Avro, JSON, ORC, & Parquet
File Format Benchmarks - Avro, JSON, ORC, & Parquet
Owen O'Malley
 
Trying SPARQL Anything with MEI
Trying SPARQL Anything with MEITrying SPARQL Anything with MEI
Trying SPARQL Anything with MEI
Enrico Daga
 
Linked Open Data Visualization
Linked Open Data VisualizationLinked Open Data Visualization
Linked Open Data Visualization
Laura Po
 

Viewers also liked (6)

Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Olaf Hartig
 
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Olaf Hartig
 
Lecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented ApplicationsLecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented Applications
Marina Santini
 
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Olaf Hartig
 
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Giannis Tsakonas
 
Desktop application interface design
Desktop application interface designDesktop application interface design
Desktop application interface design
Martin Marek
 
Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Tutorial "Linked Data Query Processing" Part 3 "Source Selection Strategies" ...
Olaf Hartig
 
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Tutorial "Linked Data Query Processing" Part 1 "Introduction" (WWW 2013 Ed.)
Olaf Hartig
 
Lecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented ApplicationsLecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented Applications
Marina Santini
 
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Tutorial "Linked Data Query Processing" Part 4 "Execution Process" (WWW 2013 ...
Olaf Hartig
 
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Query Expansion and Context: Thoughts on Language, Meaning and Knowledge Orga...
Giannis Tsakonas
 
Desktop application interface design
Desktop application interface designDesktop application interface design
Desktop application interface design
Martin Marek
 

Similar to A Context-Based Semantics for SPARQL Property Paths over the Web (20)

Understanding distributed calculi in Haskell
Understanding distributed calculi in HaskellUnderstanding distributed calculi in Haskell
Understanding distributed calculi in Haskell
Pawel Szulc
 
RChain - Understanding Distributed Calculi
RChain - Understanding Distributed CalculiRChain - Understanding Distributed Calculi
RChain - Understanding Distributed Calculi
Pawel Szulc
 
Logic
LogicLogic
Logic
Flora Mae Angtud-Galenzoga
 
Otter 2016-11-28-01-ss
Otter 2016-11-28-01-ssOtter 2016-11-28-01-ss
Otter 2016-11-28-01-ss
Ruo Ando
 
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
[Master Thesis]: SPARQL Query Rewriting with Paths
[Master Thesis]: SPARQL Query Rewriting with Paths[Master Thesis]: SPARQL Query Rewriting with Paths
[Master Thesis]: SPARQL Query Rewriting with Paths
Abdullah Abbas
 
Sensors and Samples: A Homological Approach
Sensors and Samples:  A Homological ApproachSensors and Samples:  A Homological Approach
Sensors and Samples: A Homological Approach
Don Sheehy
 
DISMATH_Part1
DISMATH_Part1DISMATH_Part1
DISMATH_Part1
Melvin Cabatuan
 
Truth, deduction, computation lecture b
Truth, deduction, computation   lecture bTruth, deduction, computation   lecture b
Truth, deduction, computation lecture b
Vlad Patryshev
 
L03 ai - knowledge representation using logic
L03 ai - knowledge representation using logicL03 ai - knowledge representation using logic
L03 ai - knowledge representation using logic
Manjula V
 
Volume computation and applications
Volume computation and applications Volume computation and applications
Volume computation and applications
Vissarion Fisikopoulos
 
Semantic Parsing with Combinatory Categorial Grammar (CCG)
Semantic Parsing with Combinatory Categorial Grammar (CCG)Semantic Parsing with Combinatory Categorial Grammar (CCG)
Semantic Parsing with Combinatory Categorial Grammar (CCG)
shakimov
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
Kiran K
 
PAGOdA poster
PAGOdA posterPAGOdA poster
PAGOdA poster
DBOnto
 
Genomic Analysis in Scala
Genomic Analysis in ScalaGenomic Analysis in Scala
Genomic Analysis in Scala
Ryan Williams
 
Federation and Navigation in SPARQL 1.1
Federation and Navigation in SPARQL 1.1Federation and Navigation in SPARQL 1.1
Federation and Navigation in SPARQL 1.1
net2-project
 
MAP Estimation Introduction
MAP Estimation IntroductionMAP Estimation Introduction
MAP Estimation Introduction
Yoshiyama Kazuki
 
NAND and NOR connectives
NAND and NOR connectivesNAND and NOR connectives
NAND and NOR connectives
Lakshmi R
 
Sara el hassad
Sara el hassadSara el hassad
Sara el hassad
Sara EL HASSAD
 
Aho corasick-lecture
Aho corasick-lectureAho corasick-lecture
Aho corasick-lecture
PekkaKilpelinen2
 
Understanding distributed calculi in Haskell
Understanding distributed calculi in HaskellUnderstanding distributed calculi in Haskell
Understanding distributed calculi in Haskell
Pawel Szulc
 
RChain - Understanding Distributed Calculi
RChain - Understanding Distributed CalculiRChain - Understanding Distributed Calculi
RChain - Understanding Distributed Calculi
Pawel Szulc
 
Otter 2016-11-28-01-ss
Otter 2016-11-28-01-ssOtter 2016-11-28-01-ss
Otter 2016-11-28-01-ss
Ruo Ando
 
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
[Master Thesis]: SPARQL Query Rewriting with Paths
[Master Thesis]: SPARQL Query Rewriting with Paths[Master Thesis]: SPARQL Query Rewriting with Paths
[Master Thesis]: SPARQL Query Rewriting with Paths
Abdullah Abbas
 
Sensors and Samples: A Homological Approach
Sensors and Samples:  A Homological ApproachSensors and Samples:  A Homological Approach
Sensors and Samples: A Homological Approach
Don Sheehy
 
Truth, deduction, computation lecture b
Truth, deduction, computation   lecture bTruth, deduction, computation   lecture b
Truth, deduction, computation lecture b
Vlad Patryshev
 
L03 ai - knowledge representation using logic
L03 ai - knowledge representation using logicL03 ai - knowledge representation using logic
L03 ai - knowledge representation using logic
Manjula V
 
Semantic Parsing with Combinatory Categorial Grammar (CCG)
Semantic Parsing with Combinatory Categorial Grammar (CCG)Semantic Parsing with Combinatory Categorial Grammar (CCG)
Semantic Parsing with Combinatory Categorial Grammar (CCG)
shakimov
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
Kiran K
 
PAGOdA poster
PAGOdA posterPAGOdA poster
PAGOdA poster
DBOnto
 
Genomic Analysis in Scala
Genomic Analysis in ScalaGenomic Analysis in Scala
Genomic Analysis in Scala
Ryan Williams
 
Federation and Navigation in SPARQL 1.1
Federation and Navigation in SPARQL 1.1Federation and Navigation in SPARQL 1.1
Federation and Navigation in SPARQL 1.1
net2-project
 
MAP Estimation Introduction
MAP Estimation IntroductionMAP Estimation Introduction
MAP Estimation Introduction
Yoshiyama Kazuki
 
NAND and NOR connectives
NAND and NOR connectivesNAND and NOR connectives
NAND and NOR connectives
Lakshmi R
 

More from Olaf Hartig (20)

Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Olaf Hartig
 
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Olaf Hartig
 
An Overview on PROV-AQ: Provenance Access and Query
An Overview on PROV-AQ: Provenance Access and QueryAn Overview on PROV-AQ: Provenance Access and Query
An Overview on PROV-AQ: Provenance Access and Query
Olaf Hartig
 
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
Olaf Hartig
 
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Olaf Hartig
 
The Impact of Data Caching of on Query Execution for Linked Data
The Impact of Data Caching of on Query Execution for Linked DataThe Impact of Data Caching of on Query Execution for Linked Data
The Impact of Data Caching of on Query Execution for Linked Data
Olaf Hartig
 
How Caching Improves Efficiency and Result Completeness for Querying Linked Data
How Caching Improves Efficiency and Result Completeness for Querying Linked DataHow Caching Improves Efficiency and Result Completeness for Querying Linked Data
How Caching Improves Efficiency and Result Completeness for Querying Linked Data
Olaf Hartig
 
A Main Memory Index Structure to Query Linked Data
A Main Memory Index Structure to Query Linked DataA Main Memory Index Structure to Query Linked Data
A Main Memory Index Structure to Query Linked Data
Olaf Hartig
 
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Olaf Hartig
 
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Olaf Hartig
 
Querying Linked Data with SPARQL (2010)
Querying Linked Data with SPARQL (2010)Querying Linked Data with SPARQL (2010)
Querying Linked Data with SPARQL (2010)
Olaf Hartig
 
Answers to usual issues in getting started with consuming Linked Data (2010)
Answers to usual issues in getting started with consuming Linked Data (2010)Answers to usual issues in getting started with consuming Linked Data (2010)
Answers to usual issues in getting started with consuming Linked Data (2010)
Olaf Hartig
 
Linked Data on the Web
Linked Data on the WebLinked Data on the Web
Linked Data on the Web
Olaf Hartig
 
Executing SPARQL Queries of the Web of Linked Data
Executing SPARQL Queries of the Web of Linked DataExecuting SPARQL Queries of the Web of Linked Data
Executing SPARQL Queries of the Web of Linked Data
Olaf Hartig
 
Using Web Data Provenance for Quality Assessment
Using Web Data Provenance for Quality AssessmentUsing Web Data Provenance for Quality Assessment
Using Web Data Provenance for Quality Assessment
Olaf Hartig
 
Answers to usual issues in getting started with consuming Linked Data
Answers to usual issues in getting started with consuming Linked DataAnswers to usual issues in getting started with consuming Linked Data
Answers to usual issues in getting started with consuming Linked Data
Olaf Hartig
 
Querying Linked Data with SPARQL
Querying Linked Data with SPARQLQuerying Linked Data with SPARQL
Querying Linked Data with SPARQL
Olaf Hartig
 
Querying Trust in RDF Data with tSPARQL
Querying Trust in RDF Data with tSPARQLQuerying Trust in RDF Data with tSPARQL
Querying Trust in RDF Data with tSPARQL
Olaf Hartig
 
Database Researchers Map
Database Researchers MapDatabase Researchers Map
Database Researchers Map
Olaf Hartig
 
Provenance Information in the Web of Data
Provenance Information in the Web of DataProvenance Information in the Web of Data
Provenance Information in the Web of Data
Olaf Hartig
 
Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Tutorial "Linked Data Query Processing" Part 5 "Query Planning and Optimizati...
Olaf Hartig
 
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Tutorial "An Introduction to SPARQL and Queries over Linked Data" Chapter 2 (...
Olaf Hartig
 
An Overview on PROV-AQ: Provenance Access and Query
An Overview on PROV-AQ: Provenance Access and QueryAn Overview on PROV-AQ: Provenance Access and Query
An Overview on PROV-AQ: Provenance Access and Query
Olaf Hartig
 
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
(An Overview on) Linked Data Management and SPARQL Querying (ISSLOD2011)
Olaf Hartig
 
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Zero-Knowledge Query Planning for an Iterator Implementation of Link Traversa...
Olaf Hartig
 
The Impact of Data Caching of on Query Execution for Linked Data
The Impact of Data Caching of on Query Execution for Linked DataThe Impact of Data Caching of on Query Execution for Linked Data
The Impact of Data Caching of on Query Execution for Linked Data
Olaf Hartig
 
How Caching Improves Efficiency and Result Completeness for Querying Linked Data
How Caching Improves Efficiency and Result Completeness for Querying Linked DataHow Caching Improves Efficiency and Result Completeness for Querying Linked Data
How Caching Improves Efficiency and Result Completeness for Querying Linked Data
Olaf Hartig
 
A Main Memory Index Structure to Query Linked Data
A Main Memory Index Structure to Query Linked DataA Main Memory Index Structure to Query Linked Data
A Main Memory Index Structure to Query Linked Data
Olaf Hartig
 
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Towards a Data-Centric Notion of Trust in the Semantic Web (A Position Statem...
Olaf Hartig
 
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Brief Introduction to the Provenance Vocabulary (for W3C prov-xg)
Olaf Hartig
 
Querying Linked Data with SPARQL (2010)
Querying Linked Data with SPARQL (2010)Querying Linked Data with SPARQL (2010)
Querying Linked Data with SPARQL (2010)
Olaf Hartig
 
Answers to usual issues in getting started with consuming Linked Data (2010)
Answers to usual issues in getting started with consuming Linked Data (2010)Answers to usual issues in getting started with consuming Linked Data (2010)
Answers to usual issues in getting started with consuming Linked Data (2010)
Olaf Hartig
 
Linked Data on the Web
Linked Data on the WebLinked Data on the Web
Linked Data on the Web
Olaf Hartig
 
Executing SPARQL Queries of the Web of Linked Data
Executing SPARQL Queries of the Web of Linked DataExecuting SPARQL Queries of the Web of Linked Data
Executing SPARQL Queries of the Web of Linked Data
Olaf Hartig
 
Using Web Data Provenance for Quality Assessment
Using Web Data Provenance for Quality AssessmentUsing Web Data Provenance for Quality Assessment
Using Web Data Provenance for Quality Assessment
Olaf Hartig
 
Answers to usual issues in getting started with consuming Linked Data
Answers to usual issues in getting started with consuming Linked DataAnswers to usual issues in getting started with consuming Linked Data
Answers to usual issues in getting started with consuming Linked Data
Olaf Hartig
 
Querying Linked Data with SPARQL
Querying Linked Data with SPARQLQuerying Linked Data with SPARQL
Querying Linked Data with SPARQL
Olaf Hartig
 
Querying Trust in RDF Data with tSPARQL
Querying Trust in RDF Data with tSPARQLQuerying Trust in RDF Data with tSPARQL
Querying Trust in RDF Data with tSPARQL
Olaf Hartig
 
Database Researchers Map
Database Researchers MapDatabase Researchers Map
Database Researchers Map
Olaf Hartig
 
Provenance Information in the Web of Data
Provenance Information in the Web of DataProvenance Information in the Web of Data
Provenance Information in the Web of Data
Olaf Hartig
 

Recently uploaded (20)

Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].pptCh 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
joshscally027
 
Chinese Dynasty owdsjaowdjiosioajkwiodjskaw
Chinese Dynasty owdsjaowdjiosioajkwiodjskawChinese Dynasty owdsjaowdjiosioajkwiodjskaw
Chinese Dynasty owdsjaowdjiosioajkwiodjskaw
ethanlai2011
 
Title Management of Food Hazards for Ensuring Food Safety.pdf
Title Management of Food Hazards for Ensuring Food Safety.pdfTitle Management of Food Hazards for Ensuring Food Safety.pdf
Title Management of Food Hazards for Ensuring Food Safety.pdf
SUTITHI HAZRA
 
2D IMA upload(4).pptx bits pilani kk birla goa
2D IMA upload(4).pptx bits pilani kk birla goa2D IMA upload(4).pptx bits pilani kk birla goa
2D IMA upload(4).pptx bits pilani kk birla goa
liteleliya
 
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppta17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
joshscally027
 
The atmosphere of Titan in late northern summer from JWST and Keck observations
The atmosphere of Titan in late northern summer from JWST and Keck observationsThe atmosphere of Titan in late northern summer from JWST and Keck observations
The atmosphere of Titan in late northern summer from JWST and Keck observations
Sérgio Sacani
 
curriculum-for-records-and-archive-level-6 (1).pdf
curriculum-for-records-and-archive-level-6 (1).pdfcurriculum-for-records-and-archive-level-6 (1).pdf
curriculum-for-records-and-archive-level-6 (1).pdf
NewtonKibira
 
december 3 grade computerscience....docx
december 3 grade computerscience....docxdecember 3 grade computerscience....docx
december 3 grade computerscience....docx
TaimurAli48
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
C-O, C-N and C-S Bond Formation Methods
C-O, C-N and C-S Bond  Formation MethodsC-O, C-N and C-S Bond  Formation Methods
C-O, C-N and C-S Bond Formation Methods
Vinayak Khairnar
 
What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"
KlaraSchfer
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
Multilayer path planning for continuous fibers via discrete optimization
Multilayer path planning for continuous fibers via discrete optimizationMultilayer path planning for continuous fibers via discrete optimization
Multilayer path planning for continuous fibers via discrete optimization
Fabian Wein
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
4.Abdominal cavity & Peritoneum splanchnology
4.Abdominal cavity & Peritoneum splanchnology4.Abdominal cavity & Peritoneum splanchnology
4.Abdominal cavity & Peritoneum splanchnology
mythi170320000
 
Water ice in the debris disk around HD 181327
Water ice in the debris disk around HD 181327Water ice in the debris disk around HD 181327
Water ice in the debris disk around HD 181327
Sérgio Sacani
 
Class 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plantsClass 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plants
090kartiksharma
 
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptxThermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Archana Verma
 
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaaretron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
ssusera539271
 
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
ssuser7603bd
 
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].pptCh 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
Ch 1 Powerpoint - Introduction to Earth Science [Savvas].ppt
joshscally027
 
Chinese Dynasty owdsjaowdjiosioajkwiodjskaw
Chinese Dynasty owdsjaowdjiosioajkwiodjskawChinese Dynasty owdsjaowdjiosioajkwiodjskaw
Chinese Dynasty owdsjaowdjiosioajkwiodjskaw
ethanlai2011
 
Title Management of Food Hazards for Ensuring Food Safety.pdf
Title Management of Food Hazards for Ensuring Food Safety.pdfTitle Management of Food Hazards for Ensuring Food Safety.pdf
Title Management of Food Hazards for Ensuring Food Safety.pdf
SUTITHI HAZRA
 
2D IMA upload(4).pptx bits pilani kk birla goa
2D IMA upload(4).pptx bits pilani kk birla goa2D IMA upload(4).pptx bits pilani kk birla goa
2D IMA upload(4).pptx bits pilani kk birla goa
liteleliya
 
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppta17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
a17bc97504b9c5ea2fd7ae44b11bebd8iiii.ppt
joshscally027
 
The atmosphere of Titan in late northern summer from JWST and Keck observations
The atmosphere of Titan in late northern summer from JWST and Keck observationsThe atmosphere of Titan in late northern summer from JWST and Keck observations
The atmosphere of Titan in late northern summer from JWST and Keck observations
Sérgio Sacani
 
curriculum-for-records-and-archive-level-6 (1).pdf
curriculum-for-records-and-archive-level-6 (1).pdfcurriculum-for-records-and-archive-level-6 (1).pdf
curriculum-for-records-and-archive-level-6 (1).pdf
NewtonKibira
 
december 3 grade computerscience....docx
december 3 grade computerscience....docxdecember 3 grade computerscience....docx
december 3 grade computerscience....docx
TaimurAli48
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
C-O, C-N and C-S Bond Formation Methods
C-O, C-N and C-S Bond  Formation MethodsC-O, C-N and C-S Bond  Formation Methods
C-O, C-N and C-S Bond Formation Methods
Vinayak Khairnar
 
What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"What´s in a name...? The Definition of a "Space Object"
What´s in a name...? The Definition of a "Space Object"
KlaraSchfer
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
Multilayer path planning for continuous fibers via discrete optimization
Multilayer path planning for continuous fibers via discrete optimizationMultilayer path planning for continuous fibers via discrete optimization
Multilayer path planning for continuous fibers via discrete optimization
Fabian Wein
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
4.Abdominal cavity & Peritoneum splanchnology
4.Abdominal cavity & Peritoneum splanchnology4.Abdominal cavity & Peritoneum splanchnology
4.Abdominal cavity & Peritoneum splanchnology
mythi170320000
 
Water ice in the debris disk around HD 181327
Water ice in the debris disk around HD 181327Water ice in the debris disk around HD 181327
Water ice in the debris disk around HD 181327
Sérgio Sacani
 
Class 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plantsClass 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plants
090kartiksharma
 
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptxThermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Archana Verma
 
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaaretron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
retron bacteriaaaaaaaaaaaaaaaaaaaaaaaaaa
ssusera539271
 
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
2023%20Histolgy%20201%20steeplechase_transfer_2025-05-24_093539.pptx
ssuser7603bd
 

A Context-Based Semantics for SPARQL Property Paths over the Web

  • 1. A Context-Based Semantics for SPARQL Property Paths over the Web Olaf Hartig and Giuseppe Pirrò
  • 2. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 2 Puzzle Give me the URL of every Web document that mentions its own URL somewhere in its text.
  • 3. A Context-Based Semantics for SPARQL Property Paths over the Web Olaf Hartig and Giuseppe Pirrò Disclaimer: This work is not about reasoning.
  • 4. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 4 Property Path Pattern (PP Pattern) (α, path, β) variable, IRI, literal (or bnode), respectively property path expression
  • 5. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 5 Property Path Expression (α, path, β) variable, IRI, literal (or bnode), respectively path := p | (IRI) ^path | (inverse) path / path | (concatenation) (path | path) | (alternative) (path)* (recursive concatenation)
  • 6. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 6 path := p | (IRI) ^path | (inverse) path / path | (concatenation) (path | path) | (alternative) (path)* (recursive concatenation) Example ( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x ) ( ex:bob , foaf:knows , ex:alice ) ( ex:alice , foaf:made , a:doc1 ) ( e:objA , foaf:maker , ex:alice ) Data: μ1 = { ?x → a:doc1 } μ2 = { ?x → e:objA }
  • 7. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 7 Example ( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x ) ( ex:bob , foaf:knows , ex:alice ) ( ex:alice , foaf:made , a:doc1 ) ( e:objA , foaf:maker , ex:alice ) G = ⟦P⟧G = { μ1, μ2 } P = μ1 = { ?x → a:doc1 } μ2 = { ?x → e:objA }
  • 8. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 8 Example ( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x ) ( ex:bob , foaf:knows , ex:alice ) ( ex:alice , foaf:made , a:doc1 ) ( e:objA , foaf:maker , ex:alice ) P =
  • 9. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 9 Example ( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x ) P = ( ex:alice , foaf:made , a:doc1 ) ( ex:bob , foaf:knows , ex:alice ) ( e:objA , foaf:maker , ex:alice )
  • 10. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 10 Example ( ex:bob , foaf:knows / (foaf:made | ^foaf:maker) , ?x ) P = ⟦P⟧W = ?? What is the expected result of executing P as a query over the Web of Linked Data? Can this expected result be computed in practice?
  • 11. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 11 Contributions ● Formal definition of a context-based query semantics to use PP patterns (and SPARQL patterns constructed thereof) as queries over Linked Data in a well-defined manner. ● Web-safeness property of such queries (i.e., the fundamental feasibility of executing such a query in practice over the WWW) ● Decidable syntactic property to identify queries that are Web safe
  • 12. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 12 ⟦(u1, p, ?x)⟧W = Context-Based Query Semantics … (u1, p, u2) (u1, p, u3) ... { μ1, μ2 } μ1 = { ?x → u2 } μ2 = { ?x → u3 }
  • 13. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 13 ⟦(u1, p / q , ?x)⟧W = Context-Based Query Semantics … (u1, p, u2) (u1, p, u3) ... { μ1, μ2 } μ1 = { ?x → b } μ2 = { ?x → a } … (u3, q, a) ... … (u2, q, b) ...
  • 14. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 14 Context-Based Query Semantics = { μ={ ?x → u } | for every URI u s.t. (u, p, a) in ctxt(u) } ⟦(?x, p, a)⟧W
  • 15. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 15 Main Result Theorem: A PP-based SPARQL pattern P is Web-safe if cbvars( P | Ø ) = vars(P), ...where cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables (see paper). ● Open problem: – Note that the condition is sufficient only. – Is there an alternative condition that is sufficient and also necessary (and decidable)?
  • 16. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 16 Summary ● Formal definition of a context-based query semantics to use PP patterns (and SPARQL patterns constructed thereof) as queries over Linked Data in a well-defined manner. ● Web-safeness property of such queries (i.e., the fundamental feasibility of executing such a query in practice over the WWW) ● Decidable syntactic property to identify queries that are Web safe
  • 17. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 17 Backup Slides
  • 18. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 18 Web-Safeness A PP-based SPARQL pattern P is Web-safe if there exists an algorithm that, for any Web of Linked Data W = (D, adoc), computes ⟦P⟧W without assuming an a-priori availability of information about the sets D and dom(adoc).
  • 19. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 19 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc.
  • 20. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 20 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc. Pex = ( (u1, p, ?x) AND (?x, q, ?y) ) cbvars( Pex | Ø ) = ? Example
  • 21. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 21 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc. Pex = ( (u1, p, ?x) AND (?x, q, ?y) ) cbvars( P1 | Ø ) = {?x} cbvars( P2 | Ø ) = Ø Example
  • 22. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 22 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc. Pex = ( (u1, p, ?x) AND (?x, q, ?y) ) cbvars( P1 | Ø ) = {?x} cbvars( P2 | sbvars(P1) ) Example
  • 23. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 23 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc. Pex = ( (u1, p, ?x) AND (?x, q, ?y) ) cbvars( P1 | Ø ) = {?x} cbvars( P2 | {?x} ) = {?x,?y} Example
  • 24. A Context-Based Semantics for SPARQL Property Paths over the Web - Olaf Hartig and Giuseppe Pirrò 24 Conditionally Bounded Variables ● cbvars( P | X ) denotes the set of conditionally bounded variables of P for a given set X of variables ● Defined recursively for all types of patterns – If P is ( P1 AND P2 ) s.t. cbvars( P1 | X ) = vars(P1) and cbvars( P2 | X U sbvars(P1) ) = vars(P2), then cbvars( P | X ) = vars(P). – If P is (u, p, β), then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x in X, then cbvars( P | X ) = vars(P). – If P is (?x, p, β) s.t. ?x not in X, then cbvars( P | X ) = Ø. – etc. Pex = ( (u1, p, ?x) AND (?x, q, ?y) ) cbvars( Pex | Ø ) = vars(Pex) = {?x,?y} Example