One of the major challenges for software, nowadays, is software cost estimation. It refers to estimating the
cost of all activities including software development, design, supervision, maintenance and so on. Accurate
cost-estimation of software projects optimizes the internal and external processes, staff works, efforts and
the overheads to be coordinated with one another. In the management software projects, estimation must
be taken into account so that reduces costs, timing and possible risks to avoid project failure. In this paper,
a decision- support system using a combination of multi-layer artificial neural network and decision tree is
proposed to estimate the cost of software projects. In the model included into the proposed system,
normalizing factors, which is vital in evaluating efforts and costs estimation, is carried out using C4.5
decision tree. Moreover, testing and training factors are done by multi-layer artificial neural network and
the most optimal values are allocated to them. The experimental results and evaluations on Dataset
NASA60 show that the proposed system has less amount of the total average relative error compared with
COCOMO model.