Catalyst is becoming one of the most important components of Apache Spark, as it underpins all the major new APIs in Spark 2.0 and later versions, from DataFrames and Datasets to Streaming. At its core, Catalyst is a general library for manipulating trees. In this talk, Yin explores a modular compiler frontend for Spark based on this library that includes a query analyzer, optimizer, and an execution planner. Yin offers a deep dive into Spark SQL’s Catalyst optimizer, introducing the core concepts of Catalyst and demonstrating how developers can extend it. You’ll leave with a deeper understanding of how Spark analyzes, optimizes, and plans a user’s query.