SlideShare a Scribd company logo
A ScyllaDB Community
A Dist Sys Programmer's
Journey into AI
Piotr Sarna
Founding Engineer
Piotr Sarna
■ Wannabe goat farmer
■ Distributed systems hacker
■ Open-source contributor & maintainer
■ Book co-author
■ Database Performance at Scale
■ Writing for Developers: Blogs That Get Read
(code for 50% off on manning.com: SCALE2025)
Disclaimer
I’m not an AI programmer, I barely catch up with all the
acronyms and I’m utterly lost every time I look at
company slack channels.
How I ended up in AI
AI I remember
machine learning folks hacking neural networks on their Jupyter
notebooks.
AI now
machine learning folks trying to squeeze the whole Internet into a few
gigabytes, while also generating orders of magnitude more synthetic
data.
How I ended up in AI
Turns out processing “the whole Internet” is an overlap
with using distributed systems:
● store lots of data
● serve lots of data
● process lots of data
● generate lots of data
Key takeaways from the AI world
● “tokenization” does not mean the compiler stage
● “token” is the main measurement unit for everything
● 1 token == “it’s complicated, but assume ~4 bytes”
● rwkv does not stand for “read write key-value”
● “model” has 42 different meanings (depends on the context)
● “context” has 42 different meanings (depends on the context)
Latency: what is it
“time delay between the cause and the effect of some
physical change in the system being observed”
L = λW
Pekka is writing a reportedly nice book about it,
assuming he ever actually finishes:
https://www.manning.com/books/latency
Latency: does AI care?
Not that much. Inference – maybe, but users already
have Stockholm syndrome for staring at responses
generated at “human typing” speed.
Throughput: what is it
“rate of message delivery over a communication channel
in a communication network”
L = λW
“Throughput” might technically come as sequel to the
“Latency” book (assuming it’s ever finished).
Throughput: does AI care?
Yep. Training is way more about high throughput.
Goodput?
Interestingly, duplicate/wrong/unordered data might be
welcome! In the right dose.
AI people call it “entropy.”
Scale: tokens worldwide
Wikipedia a few billion tokens
stackoverflow a few billion tokens
GitHub a few trillion tokens
“Natural” data
Data coming directly from the Dark Age™
- books
- academic papers
- hackernews comment section
- Source code repositories
Synthetic data
Not just made up stuff!
- wikipedia articles,
but analyzed with grammar checkers
- code,
but along with compilation warnings, errors, outputs
- made up stuff
Deduplication
Internet is quite a redundant cesspit place.
Deduplication algorithms are cool, fuzzy, and distributed!
Data lake
Systems for keeping barely structured data in one
place.
Data lakehouse
Because portmanteaux are cool (are they…)
Systems for storing barely structured data in one place,
while also allowing users to query it without losing their
minds.
Orchestrators
Systems for making sure data is processed:
● in the right order,
● in the right time,
● in a recoverable way if something bad happens.
Vector databases
Systems built specifically for storing and querying
vectors.
Issue: most of them will end up implementing “normal”
SQL features, that’s what users want.
Vector databases with a few vector features
Systems built specifically for storing data.
Adding vector search features tends to be way easier
than the other way round.
Summary: there’s lots of dist sys work in AI
ping me for more useful career tips
Thanks!
piotr@poolside.ai
piotr@sarna.dev
sarna_dev
Ad

More Related Content

Similar to A Dist Sys Programmer's Journey into AI by Piotr Sarna (20)

From a student to an apache committer practice of apache io tdb
From a student to an apache committer  practice of apache io tdbFrom a student to an apache committer  practice of apache io tdb
From a student to an apache committer practice of apache io tdb
jixuan1989
 
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" EcosystemsPyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
Uwe Korn
 
Sneaky computation
Sneaky computationSneaky computation
Sneaky computation
Juan J. Merelo
 
Simon Peyton Jones: Managing parallelism
Simon Peyton Jones: Managing parallelismSimon Peyton Jones: Managing parallelism
Simon Peyton Jones: Managing parallelism
Skills Matter
 
Peyton jones-2011-parallel haskell-the_future
Peyton jones-2011-parallel haskell-the_futurePeyton jones-2011-parallel haskell-the_future
Peyton jones-2011-parallel haskell-the_future
Takayuki Muranushi
 
Amazon Elastic Computing 2
Amazon Elastic Computing 2Amazon Elastic Computing 2
Amazon Elastic Computing 2
Athanasios Anastasiou
 
Top 10 Performance Gotchas for scaling in-memory Algorithms.
Top 10 Performance Gotchas for scaling in-memory Algorithms.Top 10 Performance Gotchas for scaling in-memory Algorithms.
Top 10 Performance Gotchas for scaling in-memory Algorithms.
srisatish ambati
 
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
Sri Ambati
 
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
André Fucs de Miranda
 
The Future of Computing is Distributed
The Future of Computing is DistributedThe Future of Computing is Distributed
The Future of Computing is Distributed
Alluxio, Inc.
 
Data Driven Security, from Gartner Security Summit 2012
Data Driven Security, from Gartner Security Summit 2012Data Driven Security, from Gartner Security Summit 2012
Data Driven Security, from Gartner Security Summit 2012
Nick Galbreath
 
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
DataWorks Summit
 
Exploring the Internet of Things Using Ruby
Exploring the Internet of Things Using RubyExploring the Internet of Things Using Ruby
Exploring the Internet of Things Using Ruby
Mike Hagedorn
 
Puppet for SysAdmins
Puppet for SysAdminsPuppet for SysAdmins
Puppet for SysAdmins
Puppet
 
Steve Watt Presentation
Steve Watt PresentationSteve Watt Presentation
Steve Watt Presentation
Big Data Houston
 
Open Source Software For Education
Open Source Software For EducationOpen Source Software For Education
Open Source Software For Education
Videoguy
 
Intro to Python Data Analysis in Wakari
Intro to Python Data Analysis in WakariIntro to Python Data Analysis in Wakari
Intro to Python Data Analysis in Wakari
Karissa Rae McKelvey
 
Time Series Anomaly Detection with Azure and .NETT
Time Series Anomaly Detection with Azure and .NETTTime Series Anomaly Detection with Azure and .NETT
Time Series Anomaly Detection with Azure and .NETT
Marco Parenzan
 
Building a Database for the End of the World
Building a Database for the End of the WorldBuilding a Database for the End of the World
Building a Database for the End of the World
jhugg
 
Big Graph Analytics on Neo4j with Apache Spark
Big Graph Analytics on Neo4j with Apache SparkBig Graph Analytics on Neo4j with Apache Spark
Big Graph Analytics on Neo4j with Apache Spark
Kenny Bastani
 
From a student to an apache committer practice of apache io tdb
From a student to an apache committer  practice of apache io tdbFrom a student to an apache committer  practice of apache io tdb
From a student to an apache committer practice of apache io tdb
jixuan1989
 
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" EcosystemsPyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
Uwe Korn
 
Simon Peyton Jones: Managing parallelism
Simon Peyton Jones: Managing parallelismSimon Peyton Jones: Managing parallelism
Simon Peyton Jones: Managing parallelism
Skills Matter
 
Peyton jones-2011-parallel haskell-the_future
Peyton jones-2011-parallel haskell-the_futurePeyton jones-2011-parallel haskell-the_future
Peyton jones-2011-parallel haskell-the_future
Takayuki Muranushi
 
Top 10 Performance Gotchas for scaling in-memory Algorithms.
Top 10 Performance Gotchas for scaling in-memory Algorithms.Top 10 Performance Gotchas for scaling in-memory Algorithms.
Top 10 Performance Gotchas for scaling in-memory Algorithms.
srisatish ambati
 
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
Sri Ambati
 
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
THE POWER OF INTELLIGENT FLOWS REAL-TIME IOT BOTNET CLASSIFICATION WITH APACH...
André Fucs de Miranda
 
The Future of Computing is Distributed
The Future of Computing is DistributedThe Future of Computing is Distributed
The Future of Computing is Distributed
Alluxio, Inc.
 
Data Driven Security, from Gartner Security Summit 2012
Data Driven Security, from Gartner Security Summit 2012Data Driven Security, from Gartner Security Summit 2012
Data Driven Security, from Gartner Security Summit 2012
Nick Galbreath
 
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
The Power of Intelligent Flows: Real-Time IoT Botnet Classification with Apac...
DataWorks Summit
 
Exploring the Internet of Things Using Ruby
Exploring the Internet of Things Using RubyExploring the Internet of Things Using Ruby
Exploring the Internet of Things Using Ruby
Mike Hagedorn
 
Puppet for SysAdmins
Puppet for SysAdminsPuppet for SysAdmins
Puppet for SysAdmins
Puppet
 
Open Source Software For Education
Open Source Software For EducationOpen Source Software For Education
Open Source Software For Education
Videoguy
 
Intro to Python Data Analysis in Wakari
Intro to Python Data Analysis in WakariIntro to Python Data Analysis in Wakari
Intro to Python Data Analysis in Wakari
Karissa Rae McKelvey
 
Time Series Anomaly Detection with Azure and .NETT
Time Series Anomaly Detection with Azure and .NETTTime Series Anomaly Detection with Azure and .NETT
Time Series Anomaly Detection with Azure and .NETT
Marco Parenzan
 
Building a Database for the End of the World
Building a Database for the End of the WorldBuilding a Database for the End of the World
Building a Database for the End of the World
jhugg
 
Big Graph Analytics on Neo4j with Apache Spark
Big Graph Analytics on Neo4j with Apache SparkBig Graph Analytics on Neo4j with Apache Spark
Big Graph Analytics on Neo4j with Apache Spark
Kenny Bastani
 

More from ScyllaDB (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Database Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick BossmanDatabase Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick Bossman
ScyllaDB
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Database Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick BossmanDatabase Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick Bossman
ScyllaDB
 
Ad

Recently uploaded (20)

Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Ad

A Dist Sys Programmer's Journey into AI by Piotr Sarna

  • 1. A ScyllaDB Community A Dist Sys Programmer's Journey into AI Piotr Sarna Founding Engineer
  • 2. Piotr Sarna ■ Wannabe goat farmer ■ Distributed systems hacker ■ Open-source contributor & maintainer ■ Book co-author ■ Database Performance at Scale ■ Writing for Developers: Blogs That Get Read (code for 50% off on manning.com: SCALE2025)
  • 3. Disclaimer I’m not an AI programmer, I barely catch up with all the acronyms and I’m utterly lost every time I look at company slack channels.
  • 4. How I ended up in AI AI I remember machine learning folks hacking neural networks on their Jupyter notebooks. AI now machine learning folks trying to squeeze the whole Internet into a few gigabytes, while also generating orders of magnitude more synthetic data.
  • 5. How I ended up in AI Turns out processing “the whole Internet” is an overlap with using distributed systems: ● store lots of data ● serve lots of data ● process lots of data ● generate lots of data
  • 6. Key takeaways from the AI world ● “tokenization” does not mean the compiler stage ● “token” is the main measurement unit for everything ● 1 token == “it’s complicated, but assume ~4 bytes” ● rwkv does not stand for “read write key-value” ● “model” has 42 different meanings (depends on the context) ● “context” has 42 different meanings (depends on the context)
  • 7. Latency: what is it “time delay between the cause and the effect of some physical change in the system being observed” L = λW Pekka is writing a reportedly nice book about it, assuming he ever actually finishes: https://www.manning.com/books/latency
  • 8. Latency: does AI care? Not that much. Inference – maybe, but users already have Stockholm syndrome for staring at responses generated at “human typing” speed.
  • 9. Throughput: what is it “rate of message delivery over a communication channel in a communication network” L = λW “Throughput” might technically come as sequel to the “Latency” book (assuming it’s ever finished).
  • 10. Throughput: does AI care? Yep. Training is way more about high throughput.
  • 11. Goodput? Interestingly, duplicate/wrong/unordered data might be welcome! In the right dose. AI people call it “entropy.”
  • 12. Scale: tokens worldwide Wikipedia a few billion tokens stackoverflow a few billion tokens GitHub a few trillion tokens
  • 13. “Natural” data Data coming directly from the Dark Age™ - books - academic papers - hackernews comment section - Source code repositories
  • 14. Synthetic data Not just made up stuff! - wikipedia articles, but analyzed with grammar checkers - code, but along with compilation warnings, errors, outputs - made up stuff
  • 15. Deduplication Internet is quite a redundant cesspit place. Deduplication algorithms are cool, fuzzy, and distributed!
  • 16. Data lake Systems for keeping barely structured data in one place.
  • 17. Data lakehouse Because portmanteaux are cool (are they…) Systems for storing barely structured data in one place, while also allowing users to query it without losing their minds.
  • 18. Orchestrators Systems for making sure data is processed: ● in the right order, ● in the right time, ● in a recoverable way if something bad happens.
  • 19. Vector databases Systems built specifically for storing and querying vectors. Issue: most of them will end up implementing “normal” SQL features, that’s what users want.
  • 20. Vector databases with a few vector features Systems built specifically for storing data. Adding vector search features tends to be way easier than the other way round.
  • 21. Summary: there’s lots of dist sys work in AI ping me for more useful career tips