The document proposes a framework for clustering time-evolving categorical data using a sliding window technique. It uses an existing clustering algorithm (Node Importance Representative) and a Drifting Concept Detection algorithm to detect changes in cluster distributions between the current and previous data windows. If a threshold difference in clusters is exceeded, reclustering is performed on the new window. Otherwise, the new clusters are added to the previous results. The framework aims to improve on prior work by handling drifting concepts in categorical time-series data.