The document presents a mathematical programming approach for selecting important variables in cluster analysis. It formulates a nonlinear binary model to minimize the distance between observations within clusters, using indicator variables to select important variables. The model is applied to a sample dataset of 30 observations across 5 variables, correctly identifying variables 3, 4 and 5 as most important for clustering the observations into two groups. The results are compared to an existing variable selection heuristic, with the mathematical programming approach achieving a 100% correct classification versus 97% for the other method.