This document describes a new algorithm for fully automatic brain tumor segmentation using 3D convolutional neural networks. The algorithm uses 3D convolutional filters to preserve spatial information, and a high-bias CNN architecture to increase effective data size and reduce model variance. On a dataset of 274 brain MR images, the algorithm achieved a median Dice score of 89% for whole tumor segmentation, significantly outperforming past methods. This demonstrates the effectiveness of generalizing low-bias high-variance methods like CNNs to learn from medium-sized datasets.