-This paper describes three different fundamental
mathematical programming approaches that are relevant to
data mining. They are: Feature Selection, Clustering and
Robust Representation. This paper comprises of two clustering
algorithms such as K-mean algorithm and K-median
algorithms. Clustering is illustrated by the unsupervised
learning of patterns and clusters that may exist in a given
databases and useful tool for Knowledge Discovery in
Database (KDD). The results of k-median algorithm are used
to collecting the blood cancer patient from a medical database.
K-mean clustering is a data mining/machine learning algorithm
used to cluster observations into groups of related observations
without any prior knowledge of those relationships. The kmean algorithm is one of the simplest clustering techniques
and it is commonly used in medical imaging, biometrics and
related fields.