Wireless sensor networks (WSNs) consists of small nodes with constrain capabilities. It enables numerous
applications with distributed network infrastructure. With its nature and application scenario, security of
WSN had drawn a great attention. In malicious environments for a functional WSN, security mechanisms
are essential. Malicious or internal attacker has gained attention as the most challenging attacks to
WSNs. Many works have been done to secure WSN from internal attacks but most of them relay on either
training data set or predefined thresholds. It is a great challenge to find or gain knowledge about the
Malicious. In this paper, we develop the algorithm in two stages. Initially, Abnormal Behaviour
Identification Mechanism (ABIM) which uses cosine similarity. Finally, Dempster-Shafer theory (DST)is
used. Which combine multiple evidences to identify the malicious or internal attacks in a WSN. In this
method we do not need any predefined threshold or tanning data set of the nodes.