SlideShare a Scribd company logo
A pixel-to-pixel segmentation of DILD
without masks
using CNN and Perlin noise
2016.11 njkim@jamonglab.com
Objectives
● Segmenting and labeling regional patterns in
DILD(Diffuse Interstitial Lung Disease) HRCT
images.
From : Younjun Chang et al, “Fast and efficient lung disease classification using hierarchical
one-against-all SVM and cost-sensitive feature selection”. 2012.
Challenges
● Small dataset
○ only 547 ROI ( 20x20 bounding box ) patches
● No human mask label
○ Extremely expensive
Dataset
Dataset
Dataset
Dataset
Traditional approach
● Superpixel approach
Traditional approach
● Superpixel result - factor 0.25
Traditional approach
● Superpixel result - factor 2
Traditional approach
● Superpixel result - factor 4
Traditional approach
● Superpixel result - factor 9
Traditional approach
● Superpixel accuracy
Traditional approach
● Superpixel limitation
○ deterministic and strong assumption
( Similarity of neighboring pixels )
New approach
● Deep learning pixel-to-pixel segmentation.
○ Hand labelled mask is needed.
○ Let’s generate it !
From : Ra Gyoung Yoon et al, “Quantitative assesment of change in regional disease patterns on
serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system”.
2012.
Mask generation
● A naive approach → Failed.
○ Because the neural network have learned deterministic
patterns instead of lung disease patterns.
Honeycombing
Emphysema
Mask generation
● Ken Perlin, “An image Synthesizer”, 1985
○ natural appearing textures
○ gradient based fractal noise
○ heavily used in game business
Mask generation
● One random Perlin noise ( simplex noise )
● two randomly selected ROI patches
ConsolidationGGO
Mask ROI Patch
Mask generation
● 547 patches → Infinite patches ( O(1006xN
) )
Model architecture
● UNet + SWWAE architecture
○ Olaf et al, “U-Net: Convolutional Networks for Biomedical Image
Segmentation”, 2015
○ Junbo et al, “Stacked What-Where Auto-encoders”, 2015
Model architecture
Skip connections
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation accuracy
High resolution segmentation
● 20 x 20 patches per 512 x 512 image
○ (512 - 20 + 1)2
→ Too expensive
High resolution segmentation
● Fully convolutional layer used
○ Various sized image input available
High resolution segmentation
● 200 x 80 grids
High resolution segmentation
● 500 x 20 grid ( Vertical grids )
High resolution segmentation
● 20 x 500 grid ( Horizontal grids )
High resolution segmentation
● Computation complexity
High resolution segmentation
● Results ( Hortz )
High resolution segmentation
● Results ( Vert )
High resolution segmentation
● Results ( Mix )
High resolution segmentation
● Comparison - Accuracy
High resolution segmentation
● Comparison - computation time
Our contributions
● A simple and practical pixel mask generation
method for DILD ROI dataset using Perlin noise.
○ No radiologist mask needed.
● We applied state-of-the-art deep CNN based
pixel-to-pixel segmentation method to DILD
dataset.
○ High accuracy with reasonable computing time.
Thank you !!!
Ad

More Related Content

What's hot (20)

Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)
Manohar Mukku
 
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
Rizwan Habib
 
Generative Adversarial Networks 2
Generative Adversarial Networks 2Generative Adversarial Networks 2
Generative Adversarial Networks 2
Alireza Shafaei
 
GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi
 
Deep Generative Models
Deep Generative ModelsDeep Generative Models
Deep Generative Models
Mijung Kim
 
그림 그리는 AI
그림 그리는 AI그림 그리는 AI
그림 그리는 AI
NAVER Engineering
 
Gan intro
Gan introGan intro
Gan intro
Hyungjoo Cho
 
Deep Advances in Generative Modeling
Deep Advances in Generative ModelingDeep Advances in Generative Modeling
Deep Advances in Generative Modeling
indico data
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
MLReview
 
EuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and ApplicationsEuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and Applications
Emanuele Ghelfi
 
Basic Generative Adversarial Networks
Basic Generative Adversarial NetworksBasic Generative Adversarial Networks
Basic Generative Adversarial Networks
Dong Heon Cho
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Yunjey Choi
 
GANs and Applications
GANs and ApplicationsGANs and Applications
GANs and Applications
Hoang Nguyen
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
Mark Chang
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
MLReview
 
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
宏毅 李
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGAN
Shyam Krishna Khadka
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
Artifacia
 
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Universitat Politècnica de Catalunya
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
Cheng-Bin Jin
 
Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)
Manohar Mukku
 
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
Rizwan Habib
 
Generative Adversarial Networks 2
Generative Adversarial Networks 2Generative Adversarial Networks 2
Generative Adversarial Networks 2
Alireza Shafaei
 
GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi
 
Deep Generative Models
Deep Generative ModelsDeep Generative Models
Deep Generative Models
Mijung Kim
 
Deep Advances in Generative Modeling
Deep Advances in Generative ModelingDeep Advances in Generative Modeling
Deep Advances in Generative Modeling
indico data
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
MLReview
 
EuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and ApplicationsEuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and Applications
Emanuele Ghelfi
 
Basic Generative Adversarial Networks
Basic Generative Adversarial NetworksBasic Generative Adversarial Networks
Basic Generative Adversarial Networks
Dong Heon Cho
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Yunjey Choi
 
GANs and Applications
GANs and ApplicationsGANs and Applications
GANs and Applications
Hoang Nguyen
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
Mark Chang
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
MLReview
 
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
宏毅 李
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGAN
Shyam Krishna Khadka
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
Artifacia
 
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Universitat Politècnica de Catalunya
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
Cheng-Bin Jin
 

Similar to A pixel to-pixel segmentation method of DILD without masks using CNN and perlin noise (20)

Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
Computer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptxComputer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptx
Yohanes Nuwara
 
Computer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptxComputer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptx
Yohanes Nuwara
 
Semantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術
CHENHuiMei
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary Meetup
Amir Alush
 
Pratik ibm-open power-ppt
Pratik ibm-open power-pptPratik ibm-open power-ppt
Pratik ibm-open power-ppt
Vaibhav R
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
Sangmin Woo
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]
Mohammad Shaker
 
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
nedasadattaheri1997
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
BeerenSahu
 
Brain Tumour Detection.pptx
Brain Tumour Detection.pptxBrain Tumour Detection.pptx
Brain Tumour Detection.pptx
RevolverRaja2
 
A location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognitionA location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognition
Federico Magliani
 
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
thanhdowork
 
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
thanhdowork
 
Face Detection.pptx
Face Detection.pptxFace Detection.pptx
Face Detection.pptx
TorshaSett
 
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
Computer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptxComputer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptx
Yohanes Nuwara
 
Computer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptxComputer Vision and GenAI for Geoscientists.pptx
Computer Vision and GenAI for Geoscientists.pptx
Yohanes Nuwara
 
Semantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術
CHENHuiMei
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary Meetup
Amir Alush
 
Pratik ibm-open power-ppt
Pratik ibm-open power-pptPratik ibm-open power-ppt
Pratik ibm-open power-ppt
Vaibhav R
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
Sangmin Woo
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]
Mohammad Shaker
 
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shap...
nedasadattaheri1997
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
BeerenSahu
 
Brain Tumour Detection.pptx
Brain Tumour Detection.pptxBrain Tumour Detection.pptx
Brain Tumour Detection.pptx
RevolverRaja2
 
A location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognitionA location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognition
Federico Magliani
 
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
thanhdowork
 
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
[NS][Lab_Seminar_250203]KAG-prompt (1).pptx
thanhdowork
 
Face Detection.pptx
Face Detection.pptxFace Detection.pptx
Face Detection.pptx
TorshaSett
 
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Ad

Recently uploaded (20)

Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxLidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
RishavKumar530754
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Journal of Soft Computing in Civil Engineering
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxLidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
RishavKumar530754
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Ad

A pixel to-pixel segmentation method of DILD without masks using CNN and perlin noise