This academic article presents a unique common fixed point theorem for four maps under contractive conditions in cone metric spaces. The authors prove the existence of coincidence points and a common fixed point theorem for four self-maps on a cone metric space that satisfy a contractive condition. They show that if one of the subspaces is complete, then the maps have a coincidence point, and if the maps are commuting, they have a unique common fixed point. This generalizes and improves on previous comparable results in the literature.