SlideShare a Scribd company logo
Accelerating Analytics for
sensor (IoT) data
Keshav Murthy
Architect, IBM Informix
rkeshav@us.ibm.com
1
2
Explosion of mobile
devices – gaming
and social apps
Advertising:
serving ads and
real-time
bidding
Social networking,
online
communities
E-commerce, social
commerce
Machine data and
real-time
operational
decisions
Smart
Devices
Internet of Things
Internet of
Things
3
Explosion of mobile
devices – gaming
and social apps
Advertising:
serving ads and
real-time
bidding
Social networking,
online
communities
E-commerce, social
commerce
Machine data and
real-time
operational
decisions
Smart
Devices
Internet of Data, really
Internet of
Things
SQL SQL, {JSON}, Spatial
{JSON},
TimeSeries
SQL, {JSON}
Simple,
{JSON},
Timeseries
SQL, {JSON}
4
IoT Applications – IBM Reference Architecture
Gateway Operational Zone Warehouse/Mart Analytics Services and Contents
Shared Operational Information
Rule Engine
ETL
Real-Time
Data Store
Hadoop Video
Analytics
Big Data
Explorer
Analytic
Tools
Connected Device
Analyzed Data
MapReduce
HDFS/GPFS
Device
Management
:
Predictive
Maintenance
Traffic
Optimization
Driving
Behavior
Incident
Analysis
Infotainment
Service
Raw Data
Summarized
Data
Notification
Analytic
Report
B2C/B2B
Portal
Admin
Console
Operator
Console
LocalIntelligence
NetworkSupport
Stream
Processing
ETL
RDB
DataMart
SOE Data
Video
Management
Asset Data
Management
Master Data
Management
Reference
Data Hub
Video Data
..
Environment
Data, etc.
Other
Data
Local
Database
5
IoT Applications – IBM Reference Architecture
Gateway Operational Zone Warehouse/Mart Analytics Services and Contents
Shared Operational Information
Rule Engine
ETL
Real-Time
Data Store
Hadoop Video
Analytics
Big Data
Explorer
Analytic
Tools
Connected Device
Analyzed Data
MapReduce
HDFS/GPFS
Device
Management
:
Predictive
Maintenance
Traffic
Optimization
Driving
Behavior
Incident
Analysis
Infotainment
Service
Raw Data
Summarized
Data
Notification
Analytic
Report
B2C/B2B
Portal
Admin
Console
Operator
Console
LocalIntelligence
NetworkSupport
Stream
Processing
ETL
RDB
DataMart
SOE Data
Video
Management
Asset Data
Management
Master Data
Management
Reference
Data Hub
Video Data
..
Environment
Data, etc.
Other
Data
Local
Database
Scenarios for Informix
© 2014 IBM Corporation6
IBM Cloud: Think it. Build it. Tap into it.IoT Solutions, an architecture.
Collection of data for all
sensors
Data from
other kinds of
sensors
Consumer / Business
Sensors in the
home
Informix TimeSeries Service
NoSQL, Relational,
Timeseries & Spatial
storage & analytics
Informix Warehouse
Accelerator
SPSS/Cognos
MessageSight /
MQTT
SoftLayer /
BlueMix
BigInsights
Gateways for data
consolidation
Infosphere Streams
(no gateway)
= IBM products = IBM Informix Relational Database
In-memory analytics
Predictive analytics
and dashboard
Cloud infrastructure
Hadoop
Publish /
Subscribe
Real-time
analytics
• Individual Car Recognition in the parking zone
•Composite sensors to transmit license image
• Picture,location,weight,color,etc
•Cloud service to recognize the car plate number
•Gateway is the orchestrator: collection, sync, service
Myriad of devices for gateways: Intel Galileo, ARM based boards.
Shaspa embedded Informix into its stack for sensor data mgmt.
IBM Informix developer edition. Download Now: http://www-03.ibm.com/software/products/en/infodeveedit
Handling Big Data
IBM Bluemix: TimeSeries Service
IBM Bluemix: IoT Service
IBM Bluemix:
IBM Internet of things Service
12
SQL {NoSQL:JSON}
Define Schema first Write the program first
Relational Key-value, Document, column
family, graph and text
Changing schema is hard Assumes dynamic schema
Scale-up Scale-out
ACID consistency BASE consistency
Transactions No Transactions
SQL Proprietary API; Sometimes has
the “spirit” of SQL
13
SQL Timeseries
Define Schema first Create Timeseries Row Type
Relational Timeseries Optimized with
projection to relational;
Often used with Spatial data
Changing schema is hard Changing schema is hard;
Flexible with Timeseries({JSON})
Scale-up Scale-up & Scale-out
ACID consistency ACID consistency
SQL SQL extensions; Relational
projection.
Data Management: devices to Cloud
Enterprise replication + Flexible Grid
App Server
JDBC
App Server
Mongo Driver
Listener
Informix/1
Primary
Informix/1
SDS/HDR
Informix/1
RSS
Informix/2
Primary
Informix/2
SDS/HDR
Informix/2
RSS
Informix/3
Primary
Informix/3
SDS/HDR
Informix/3
RSS
Informix/4
Primary
Informix/4
SDS/HDR
Informix/4
RSS
Informix/5
Primary
Informix/5
SDS/HDR
Informix/5
RSS
Informix/6
Primary
Informix/6
SDS/HDR
Informix/6
RSS
Mongo API
Node.JS
Express.JS
AngularJS
REST APIs
NoSQL SQLCloud
Informix warehouse Accelerator
Informix: All Together Now!
15
SQL Tables
JSON Collections
TimeSeries
MQ Series
SQL APIs
JDBC, ODBC
Informix
IWA – BLU ACCELERATION
GENBSON: SQL to {BSON}
MongoDB
Drivers
TEXT SEARCH
SPATIAL
TIME SERIES {BSON}
SQL API
Mongo API
(NoSQL)
Relational Table JSON Collections
Standard ODBC, JDBC,
.NET, OData, etc.
Language SQL.
Mongo APIs for Java,
Javascript, C++, C#,...
Direct SQL Access.
Dynamic Views
Row types
Mongo APIs for Java,
Javascript, C++, C#,...
JSON CollectionsJSON Collections
Standard SQL/ext
JDBC/ODBC
JSON Support
Virtual Table
JSON support
TimeseriesJSON Collections TimeseriesRelational Table JSON Timeseries
Spatial
Text
Standard SQL
JDBC/ODBC
JSON Support
JSON Support
Hybrid Access:
SQL, JSON, Timeseries & Spatial
1 1-1-11 12:00 Value 1 Value 2 …….. Value N
2 1-1-11 12:00 Value 1 Value 2 …….. Value N
3 1-1-11 12:00 Value 1 Value 2 …….. Value N
… … … … …….. …
1 1-1-11 12:15 Value 1 Value 2 …….. Value N
2 1-1-11 12:15 Value 1 Value 2 …….. Value N
3 1-1-11 12:15 Value 1 Value 2 …….. Value N
… … … … …….. …
Relational Schema: Smart Meters Sensor
Smart_Meters Table
•Each row contains one record = billions of rows in the table
•All data is indexed for efficient lookups
•Data is appended to the end of the table as it arrives
•Meter ID’s stored in every record
•No concept of a missing row
TableGrows
KWH Voltage ColNTimeMeter_id
Index all columns
1 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …]
2 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …]
3 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …]
4 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …]
… …
•Each row contains all the data for a single meter, data append to end of the row
•Data is not indexed, only the meter ID column is indexed
•Data on disk is clustered by meter id and kept ordered by time
•Meter IDs stored once rather than with every record
•Timestamps are not stored on disk, instead are calculated by position in series
•Missing intervals are marked with a placeholder
Smart_Meters Sensor table
Table grows
Meter_id Timeseries(mysensor)
Same Table using Informix TimeSeries Schema
(logical view)
Index
Create row type mysensor(ts datetime year to fraction(5),
value1 int, value2 float, …..valuen int);
Physical View of Informix TimeSeries Data
Container1
Container2
Container3
meter_id vee_interval_ts
1
2
3
4
5
7
8
(int) timeseries(mysensor)
6
Each Container typically
placed on a separate disk
vee_interval_table Table
Accessing TimeSeries
•Access through standard tabular view
–Virtual Table Interface (VTI)
–Makes TimeSeries look like a standard relational table
•SQL Interface
–100+ functions
•Customized functions
–Written in Stored Procedure Language (SPL), “C”, Java
–65+ “C” functions
TimeSeries SQL Interface
•TimeSeries data is usually accessed through user defined
routines (UDR’s) from SQL, some of these are:
–Clip() – Access a subset of data from a time series
–LastElem(), FirstElem() - return the last (first) element in the time
series
–Apply() – Filter out time series rows and apply functions to those that
remain
–AggregateBy() – Rollup time series data to be hourly/daily/yearly or
custom intervals
–SetContainerName() - move a time series from one container to
another.
–Transpose() – Make a time series appear to be a table
–MovingAvg() – Create a time series of the moving average
–Plus nearly 100 other functions…
Virtual Table Interface makes Time Series
data appear Relational
mtr_id Series
(int) timeseries(mtr_data)
SM_vt
1 Tue Value 1
1 Wed Value 1
... ...
3 Mon Value 1
3 Tue Value 1
3 Wed Value 1
... ... ... ...
1 Mon Value 1 Value 2
col_1 col_2datemtr_id
Smart_meter
...
...
...
...
...
...
...
...
TimeSeries Table TimeSeries Virtual Table
Execute procedure tscreatevirtualtable
[(Mon, v1, ...)(Tue,v1…)]
(‘SM_vt’, ‘Smart_meter’);
8
7
6
5
4
3
2
1
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
[(Mon, v1, ...)(Tue,v1…)]
...
Value 2
Value 2
Value 2
Value 2
Value 2
...
select min(tstamp), max(tstamp) from
ts_data_v;
select first 3 state,avg(value) average
from ts_data_v v,
customer_ts_data l,
customer c
where v.loc_esi_id = l.loc_esi_id and
l.customer_num = c.customer_num
group by 1 order by 2 desc;
Querying on the VTI Table
IoT - Devices
Informix
Timeseries Tables
Timeseries VTI
Tables
DataLoader
JSON
Data Files
MiddlewareProcessing
JSON
Managing Variety: Data flow for IoT
Data
IoT - Devices
Managing Variety: IoT Model Makeover
Before:
CREATE ROW TYPE mysensor
(ts DATETIME YEAR TO FRACTION(5),
tag1 FLOAT, tag2 FLOAT, tag3 FLOAT, tag5 FLOAT,tag6 FLOAT,tag6 FLOAT,tag7
FLOAT,tag8 FLOAT, tag9 FLOAT,tag10 FLOAT,tag11 FLOAT,tag12 FLOAT,tag13
FLOAT,tag15 FLOAT,tag16 FLOAT,tag17 FLOAT,tag18 FLOAT,tag19 FLOAT,tag20
FLOAT,tag21 FLOAT,tag22 FLOAT,tag23 FLOAT,tag24 FLOAT,tag26 FLOAT,tag27
FLOAT,tag28 FLOAT,tag
….
tag147 FLOAT,tag148 FLOAT,tag149 FLOAT,tag150 FLOAT);
AFTER:
CREATE ROW TYPE mysensor
(stime DATETIME YEAR TO FRACTION(5),
jdata BSON)
Informix
Timeseries Tables
Timeseries VTI
Tables
IoT - Devices
DataLoader
JSON
Data Files
MiddlewareProcessing
JSON
type id Usage Timeseries(IFXTSBSON)
“XA” 12 (2014-01-01 01:21:000, {x:1,y:2}),
(2014-02-02 01:23:000, {x:3, y:5, z:42})
“XB” 48 (2014-01-01 01:21:000, {c:1,d:”ACND”}),
(2014-04-02 01:23:000, {c:92,d:”MCBS”,
e:42})
“XC” 23 (2015-01-01 01:21:000, {p:1,q:2}),
(2015-03-02 01:23:000, {p:3, y:5, z:42}),
Managing Variety using Timeseries(JSON)
Data
IoT - Devices
Informix
Timeseries Tables
Timeseries VTI
Tables
Timeseries{JSON} => VTI-Table{JSON}
type id Timeseries(IFXJSTYPE)
“XA” 12 (2014-01-01 01:21:000, {x:1,y:2}),
(2014-02-02 01:23:000, {x:3, y:5, z:42})
“XB” 48 (2014-01-01 01:21:000, {c:1,d:”ACND”}),
(2014-04-02 01:23:000, {c:92,d:”MCBS”, e:42})
“XC” 23 (2015-01-01 01:21:000, {p:1,q:2}),
(2015-03-02 01:23:000, {p:3, y:5, z:42}),
type id Timestamp
“XA” 12 2014-01-01 01:21:000
“XA” 12 2014-02-02 01:23:000
“XB” 48 2014-01-01 01:21:000
“XB” 48 2014-04-02 01:23:000
“XC” 23 2015-01-01 01:21:000
“XC” 23 2015-03-02 01:23:000
BSON/JSON
{x:1,y:2}
{x:3, y:5, z:42}
{c:1,d:”ACND”}
{c:92,d:”MCBS”, e:42}
{p:1,q:2}
{p:3, y:5, z:42}
Timeseries on JSON
CREATE ROW TYPE info( stime datetime year to fraction(5), jdata bson);
CREATE TABLE iotdata(id int primary key, tsdata
timeseries(info) );
INSERT INTO iotdata VALUES(472,'origin(2014-04-23
00:00:00.00000), …, regular,[({“temp":78, “wind":7.2,
“loc":“Miami-1 "})]');
INSERT INTO iotdata values(384,'origin(2014-04-21
00:00:00.00000), …, regular,[({“sleep": 380, “steps":7423,
“name":"Joe "})]');
SELECT GetFirstElem(tsdata,0)::row(timestamp datetime year to
fraction(5), jdata json) FRONM tj;
(expression) ROW('2014-04-21 00:00:00.00000','{“temp":78,“wind":7.2,“loc":“Miami-1"}')
(expression) ROW('2014-04-21 00:00:00.00000','{“sleep":380,“steps":7423,“name":"Joe "}')
Timeseries on JSON
Execute procedure TSCreateVirtualTab(…);
-- Equivalent relational schema
CREATE TABLE iotvti(id INT PRIMARY KEY,
stime DATETIME YEAR TO FRACTION(5)),
jdata BSON);
SELECT id,
jdata.temp::int,
jdata.loc.city.zip::varchar(32)
FROM iotvti WHERE jdata.temp > 75;
db.iotvti.find({“jdata.temp”:{$gt:75}, {jdata:1},
{jdata:1});
{“temp":78, “wind":7.2, “loc":“Miami-1 "}
Informix REST API
•REpresentational State Transfer
http://<hostname>[:<port#>]/<db>/<collection>
•Integrated into Informix
•GET /demo/people?sort={age:-1}&fields={_id:0,lastName:0}
RESPONSE: [{"firstName":"Anakin","age":49},
{"firstName":"Padme","age":47},
{"firstName":"Luke","age":31},
{"firstName":"Leia","age":31}]
GET /stores_demo/ts_data_v?query={loc_esi_id:"4727354321046021"}
Available Methods
Method Path Description
POST / Create a new database
POST /db Create a new collection
POST /db/collection Creates a new document
GET / Database listing
GET /db Collection listing
GET /db/collection Query the collection
DELETE / Drop all databases
DELETE /db Drop a database
DELETE /db/collection Drop a collection
DELETE /db/collection?query={...} Delete documents that satisfy the
query from a collection
PUT /db/collection Update a document
INFORMIX REST API
ODBC, JDBC connections
Informix Dynamic Server
Tables
Tables
Relational Tables
and views
JSON Collections
{Customer}
partners
SQL & BI Applications
{Orders}
CRM
Inventory
Tables
Timeseries Tables
{mobile/devices}
Analytics
Informix Database Server
Informix warehouse Accelerator
BI Applications
Step 1. Install, configure,
start Informix
Step 2. Install, configure,
start Accelerator
Step 3. Connect Studio to
Informix & add accelerator
Step 4. Design, validate,
Deploy Data mart
Step 5. Load data to
accelerator
Ready for Queries
IBM Smart Analytics
Studio
Step 1
Step 2
Step 3
Step 4
Step 5
Ready
Informix Ultimate Warehouse edition
34
INTEL/IWA: Breakthrough technologies for
performance
1
2
3
4
5
6
7 1
2
3
4
5
6
7
1. Large memory support
64-bit computing; System X with MAX5 supports up
to 6TB on a single SMP box; Up to 640GB on each
node of blade center. IWA: Compress large dataset
and keep it in memory; totally avoid IO.
7. Multi-core, multi-node environment
Nehalem has 8 cores and Westmere 10 cores. This trend is
expected to continue. IWA: Parallelize the scan, join, group
operations. Keep copies of dimensions to avoid cross-node
synchronization.
4. Virtualization Performance
Lower overhead: Core micro-architecture
enhancements, EPT, VPID, and End-to-End
HW assist IWA: Helps informix and IWA to
seemlessly run and perform in virtualized
environment.
5. Hyperthreading
2x logical processors; increases processor
throughput and overall performance of threaded
software. IWA: Does not exploit this since the
software is written to avoid pipeline flushing.
3. Frequency Partitioning
IWA: Enabler for the effective parallel access
of the compressed data for scanning.
Horizontal and Vertical Partition Elimination.
2. Large on-chip Cache
L1 cache 64KB per core, L2 cache is 256KB per
core and L3 cache is about 4-12 MB.
Additional Translation lookaside buffer (TLB).
IWA: New algorithms to avoid pipeline
flushing and cache hash tables in L2/L3 cache
6. Single Instruction Multiple Data
Specialized instructions for manipulating
128-bit data simultaneously. IWA:
Compresses the data into deep columnar
fashion optimized to exploit SIMD. Used in
parallel predicate evaluation in scans.
35
Informix Primary
Informix warehouse Accelerator
BI Applications
Step 1. Install, configure,
start Informix
Step 2. Install, configure,
start Accelerator
Step 3. Connect Studio to
Informix & add accelerator
Step 4. Design, validate,
Deploy Data mart from
Primary, SDS, HDR, RSS
Step 5. Add IWA to sqlhosts
Load data to
Accelerator from any node.
Ready for Queries
IBM Smart Analytics
Studio
Step 1
Step 3
Step 4
Step 5
Ready
Informix Warehouse Accelerator – 11.70.FC5. MACH11 Support
Informix
SDS1
Informix
SDS2
Informix
HDR
Secondary
Informix
RSS
Step 2
Design DM by
workload analysis or
manually
Deployed datamart
Datamart
Deleted
Datamart in USE
Datamart Disabled
Partition based refresh
Trickle feed refresh
Deploy
Load
Drop
Disable
Enable Drop
Typically,
300 GB/hr
10 GB under 3 mins
Online operation
Stages & Options for data loading to IWA
IWA 1st Release
On SMP
SMB: IGWE
Scale out: IWA
on Blade ServerWorkload Analysis Tool
More Locales
Data Currency
IWA: Roadmap
Partition Refresh
MACH11 support
Solaris on Intel
Automatic data refresh
Union queries
Derived tables
OAT Integration
SQL/OLAP for IWA
Timeseries Acceleration
11.7xC2
11.7xC5
12.1xC1
11.7xC3
11.7xC4
2012 IIUG
2013 IIUG
TS Data Refresh
improvements;
Quicker to analysis
12.10.xC2
12.10.xC3 View sup
Synonym
NoSQL
Informix Dynamic Server
Tables
Tables
Relational Tables
and views
JSON Collections
{Customer}
partners
SQL & BI Applications
{Orders}
CRM
Inventory
Tables
Timeseries Tables
{Orders}
Text index (BTS)
spatial indices
Informix Warehouse Accelerator – In-Memory Query Engine
ODBC, JDBC connections
SQL Apps/Tools
MongoDB Drivers
NoSQL Apps/Tools
IWA: Complex Data Analysis
Informix Database Server
Informix Warehouse Accelerator
BI Applications
Informix Database Server
Factdim1
Dim4 - View
dim3
dim2
dim2Informix
IoT ApplicationsLoB Apps
IoT Applications
BI Applications
Mobile Apps
Informix
IWA: sensor Data Analysis
Informix Database Server
Informix Warehouse Accelerator
Informix Database Server
SQL Table
SQL View
SQL
Table
SQL Table
SQL TableInformix
LoB Apps
IoT
Applications
BI Applications
Mobile Apps
Informix
Timeseries
{JSON}
{JSON}
Cognos
SQL Table
ODBC, JDBC connections
Informix Dynamic Server
Tables
Tables
Relational Tables
and views
JSON Collections
{Customer}
partners
SQL & BI Applications
{Orders}
CRM
Inventory
Tables
Timeseries Tables
{mobile/devices}
Analytics
Informix warehouse Accelerator
Create the TS VTI Table
TSCreateVirtualTab();
Create Data mart
Ifx_TSDW_setCalendar()
Ifx_TSDW_CreateWindow(
)
Ifx_TSDW_updatePartition(
)
Datamart in USE
Timeseries data mart
Deploy & load Mart;
ifx_TSDW_moveWindows()
insert into calendartable (c_name, c_calendar) values
('2010monthly', 'startdate(2010-01-01 00:00:00.00000), pattstart(2010-01-01 00:00:00.00000), pattern({1 on},month)');
execute function ifx_TSDW_setCalendar('my_accel', 'my_mart', 'my_owner', 'my_table', '2010monthly');
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 0, 3);
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 12, 15);
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 24, 27);
or, by using time stamps to identiy the virtual partitions
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table',’2010-01'::datetime year to month, '2010-04'::datetime year to
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table','2011-01'::datetime year to month, '2011-04'::datetime year to
ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table','2012-01'::datetime year to month, '2012-04'::datetime year to
time
201220112010
TSVTdata onaccelerator, partitioned monthly
time
201220112010
execute function ifx_TSDW_updatePartition
( 'demo_dwa','demo_mart','informix','ts_data_v', '2011-02'::datetime year to month);
execute function ifx_TSDW_dropWindow
( 'demo_dwa','demo_mart','informix','ts_data_v', '2011-02'::datetime year to month);
Informix TimeSeries: Key Strengths
• What is a Time Series?
– A logically connected set of records ordered by time
• Informix Performance
– Time series queries run 60 times or more faster than relational only
– Performs operations hard or impossible to run in standard SQL
– Data loaders tuned to handle time series data
• Informix Space Savings
– Saves at least 50% over standard relational layout
– Timeseries(JSON) handles variety of sensor data optimally
• Informix Flexibility
– Develop proprietary algorithms to run inside the database
– Join time series, relational, and spatial data in the same query
• Informix Ease-of-Use
– Integrates easily with any ODBC/JDBC based tools and applications
– Conceptually closer to how users think of time series
• Informix Warehouse Accelerator
– Load standard SQL data types
– Exploit VTI projection of timeseries to integrate with tools like Cognos
– Use window management procedures to load specific
Informix: All Together Now!
46
SQL Tables
JSON Collections
TimeSeries
MQ Series
SQL APIs
JDBC, ODBC
Informix
IWA – BLU ACCELERATION
GENBSON: SQL to {BSON}
MongoDB
Drivers
TEXT SEARCH
SPATIAL
TIME SERIES {BSON}
THANK YOU
Keshav Murthy
rkeshav @ us . ibm . com
Ad

More Related Content

What's hot (20)

Bhadale group of companies edge intelligence services catalogue
Bhadale group of companies edge intelligence services catalogueBhadale group of companies edge intelligence services catalogue
Bhadale group of companies edge intelligence services catalogue
Vijayananda Mohire
 
A Pragmatic Reference Architecture for The Internet of Things
A Pragmatic Reference Architecture for The Internet of ThingsA Pragmatic Reference Architecture for The Internet of Things
A Pragmatic Reference Architecture for The Internet of Things
Rick G. Garibay
 
IoT Platforms and Architecture
IoT Platforms and ArchitectureIoT Platforms and Architecture
IoT Platforms and Architecture
Lee House
 
IoT design and services
IoT design and servicesIoT design and services
IoT design and services
Embien Technologies
 
Internet of Things Stack - Presentation Version
Internet of Things Stack - Presentation VersionInternet of Things Stack - Presentation Version
Internet of Things Stack - Presentation Version
Postscapes
 
Momentum in Big Data, IoT and Machine Intelligence
Momentum in Big Data, IoT and Machine IntelligenceMomentum in Big Data, IoT and Machine Intelligence
Momentum in Big Data, IoT and Machine Intelligence
Shamshad Ansari
 
Microsoft & IoT
Microsoft & IoTMicrosoft & IoT
Microsoft & IoT
Clemente Giorio
 
Powering the Internet of Things with Apache Hadoop
Powering the Internet of Things with Apache HadoopPowering the Internet of Things with Apache Hadoop
Powering the Internet of Things with Apache Hadoop
Cloudera, Inc.
 
IoT Architecture - are traditional architectures good enough?
IoT Architecture - are traditional architectures good enough?IoT Architecture - are traditional architectures good enough?
IoT Architecture - are traditional architectures good enough?
Guido Schmutz
 
Simplify Internet of Things with an Intelligent Gateway
Simplify Internet of Things with an Intelligent GatewaySimplify Internet of Things with an Intelligent Gateway
Simplify Internet of Things with an Intelligent Gateway
Eurotech
 
05 internet-of-things-io t-cloudcomputing
05 internet-of-things-io t-cloudcomputing05 internet-of-things-io t-cloudcomputing
05 internet-of-things-io t-cloudcomputing
John Soldatos
 
Green Compute and Storage - Why does it Matter and What is in Scope
Green Compute and Storage - Why does it Matter and What is in ScopeGreen Compute and Storage - Why does it Matter and What is in Scope
Green Compute and Storage - Why does it Matter and What is in Scope
Narayanan Subramaniam
 
IoT and Big Data - Iot Asia 2014
IoT and Big Data - Iot Asia 2014IoT and Big Data - Iot Asia 2014
IoT and Big Data - Iot Asia 2014
John Berns
 
Watson IoT Platform Sizing & Pricing - Sept 2016
Watson IoT Platform Sizing & Pricing - Sept 2016Watson IoT Platform Sizing & Pricing - Sept 2016
Watson IoT Platform Sizing & Pricing - Sept 2016
Jason Lu
 
Key Data Management Requirements for the IoT
Key Data Management Requirements for the IoTKey Data Management Requirements for the IoT
Key Data Management Requirements for the IoT
MongoDB
 
Internet of Things and Big Data
Internet of Things and Big DataInternet of Things and Big Data
Internet of Things and Big Data
Swiss Data Forum Swiss Data Forum
 
Microsoft and Internet of your Things
Microsoft and Internet of your ThingsMicrosoft and Internet of your Things
Microsoft and Internet of your Things
Vinícius Batista de Souza
 
IoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM InformixIoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM Informix
Pradeep Muthalpuredathe
 
Google Cloud IoT Core
Google Cloud IoT CoreGoogle Cloud IoT Core
Google Cloud IoT Core
Ido Flatow
 
Why Gateways are Important in Your IoT Architecture
Why Gateways are Important in Your IoT ArchitectureWhy Gateways are Important in Your IoT Architecture
Why Gateways are Important in Your IoT Architecture
IBM Analytics
 
Bhadale group of companies edge intelligence services catalogue
Bhadale group of companies edge intelligence services catalogueBhadale group of companies edge intelligence services catalogue
Bhadale group of companies edge intelligence services catalogue
Vijayananda Mohire
 
A Pragmatic Reference Architecture for The Internet of Things
A Pragmatic Reference Architecture for The Internet of ThingsA Pragmatic Reference Architecture for The Internet of Things
A Pragmatic Reference Architecture for The Internet of Things
Rick G. Garibay
 
IoT Platforms and Architecture
IoT Platforms and ArchitectureIoT Platforms and Architecture
IoT Platforms and Architecture
Lee House
 
Internet of Things Stack - Presentation Version
Internet of Things Stack - Presentation VersionInternet of Things Stack - Presentation Version
Internet of Things Stack - Presentation Version
Postscapes
 
Momentum in Big Data, IoT and Machine Intelligence
Momentum in Big Data, IoT and Machine IntelligenceMomentum in Big Data, IoT and Machine Intelligence
Momentum in Big Data, IoT and Machine Intelligence
Shamshad Ansari
 
Powering the Internet of Things with Apache Hadoop
Powering the Internet of Things with Apache HadoopPowering the Internet of Things with Apache Hadoop
Powering the Internet of Things with Apache Hadoop
Cloudera, Inc.
 
IoT Architecture - are traditional architectures good enough?
IoT Architecture - are traditional architectures good enough?IoT Architecture - are traditional architectures good enough?
IoT Architecture - are traditional architectures good enough?
Guido Schmutz
 
Simplify Internet of Things with an Intelligent Gateway
Simplify Internet of Things with an Intelligent GatewaySimplify Internet of Things with an Intelligent Gateway
Simplify Internet of Things with an Intelligent Gateway
Eurotech
 
05 internet-of-things-io t-cloudcomputing
05 internet-of-things-io t-cloudcomputing05 internet-of-things-io t-cloudcomputing
05 internet-of-things-io t-cloudcomputing
John Soldatos
 
Green Compute and Storage - Why does it Matter and What is in Scope
Green Compute and Storage - Why does it Matter and What is in ScopeGreen Compute and Storage - Why does it Matter and What is in Scope
Green Compute and Storage - Why does it Matter and What is in Scope
Narayanan Subramaniam
 
IoT and Big Data - Iot Asia 2014
IoT and Big Data - Iot Asia 2014IoT and Big Data - Iot Asia 2014
IoT and Big Data - Iot Asia 2014
John Berns
 
Watson IoT Platform Sizing & Pricing - Sept 2016
Watson IoT Platform Sizing & Pricing - Sept 2016Watson IoT Platform Sizing & Pricing - Sept 2016
Watson IoT Platform Sizing & Pricing - Sept 2016
Jason Lu
 
Key Data Management Requirements for the IoT
Key Data Management Requirements for the IoTKey Data Management Requirements for the IoT
Key Data Management Requirements for the IoT
MongoDB
 
IoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM InformixIoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM Informix
Pradeep Muthalpuredathe
 
Google Cloud IoT Core
Google Cloud IoT CoreGoogle Cloud IoT Core
Google Cloud IoT Core
Ido Flatow
 
Why Gateways are Important in Your IoT Architecture
Why Gateways are Important in Your IoT ArchitectureWhy Gateways are Important in Your IoT Architecture
Why Gateways are Important in Your IoT Architecture
IBM Analytics
 

Viewers also liked (20)

IoT architecture
IoT architectureIoT architecture
IoT architecture
Sumit Sharma
 
Internet of Things and the Value of Tracking Everything
Internet of Things and the Value of Tracking EverythingInternet of Things and the Value of Tracking Everything
Internet of Things and the Value of Tracking Everything
Paul Barsch
 
Sensing as-a-Service - The New Internet of Things (IOT) Business Model
Sensing as-a-Service - The New Internet of Things (IOT) Business ModelSensing as-a-Service - The New Internet of Things (IOT) Business Model
Sensing as-a-Service - The New Internet of Things (IOT) Business Model
Dr. Mazlan Abbas
 
A Reference Architecture for IoT
A Reference Architecture for IoT A Reference Architecture for IoT
A Reference Architecture for IoT
WSO2
 
IoT Cloud architecture
IoT Cloud architectureIoT Cloud architecture
IoT Cloud architecture
MachinePulse
 
Internet of Things
Internet of ThingsInternet of Things
Internet of Things
Vala Afshar
 
FIWARE Developers Week_Managing context information at large scale_conference
FIWARE Developers Week_Managing context information at large scale_conferenceFIWARE Developers Week_Managing context information at large scale_conference
FIWARE Developers Week_Managing context information at large scale_conference
FIWARE
 
IBM informix: compared performance efficiency between physical server and Vir...
IBM informix: compared performance efficiency between physical server and Vir...IBM informix: compared performance efficiency between physical server and Vir...
IBM informix: compared performance efficiency between physical server and Vir...
BeGooden-IT Consulting
 
Informix SQL & NoSQL: Putting it all together
Informix SQL & NoSQL: Putting it all togetherInformix SQL & NoSQL: Putting it all together
Informix SQL & NoSQL: Putting it all together
Keshav Murthy
 
Introduction to ibm internet of things foundation
Introduction to ibm internet of things foundationIntroduction to ibm internet of things foundation
Introduction to ibm internet of things foundation
Bernard Kufluk
 
Fiware Developers Week IoT Agents (Advanced)
Fiware Developers Week IoT Agents (Advanced)Fiware Developers Week IoT Agents (Advanced)
Fiware Developers Week IoT Agents (Advanced)
dmoranj
 
ThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS - Emotion and the IoT - Scott SmithThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS
 
Car safety system
Car safety systemCar safety system
Car safety system
Pragyaditya Das
 
IoT Agents (Introduction)
IoT Agents (Introduction)IoT Agents (Introduction)
IoT Agents (Introduction)
dmoranj
 
Drilling on JSON
Drilling on JSONDrilling on JSON
Drilling on JSON
Keshav Murthy
 
Introduction to NoSQL and Couchbase
Introduction to NoSQL and CouchbaseIntroduction to NoSQL and Couchbase
Introduction to NoSQL and Couchbase
Cecile Le Pape
 
Utilizing Arrays: Modeling, Querying and Indexing
Utilizing Arrays: Modeling, Querying and IndexingUtilizing Arrays: Modeling, Querying and Indexing
Utilizing Arrays: Modeling, Querying and Indexing
Keshav Murthy
 
Internet of things (IoT) Patents | Internet of things (IoT) based Systems & M...
Internet of things (IoT) Patents | Internet of things (IoT) based Systems & M...Internet of things (IoT) Patents | Internet of things (IoT) based Systems & M...
Internet of things (IoT) Patents | Internet of things (IoT) based Systems & M...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
 
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Rahul Dev
 
Understanding N1QL Optimizer to Tune Queries
Understanding N1QL Optimizer to Tune QueriesUnderstanding N1QL Optimizer to Tune Queries
Understanding N1QL Optimizer to Tune Queries
Keshav Murthy
 
Internet of Things and the Value of Tracking Everything
Internet of Things and the Value of Tracking EverythingInternet of Things and the Value of Tracking Everything
Internet of Things and the Value of Tracking Everything
Paul Barsch
 
Sensing as-a-Service - The New Internet of Things (IOT) Business Model
Sensing as-a-Service - The New Internet of Things (IOT) Business ModelSensing as-a-Service - The New Internet of Things (IOT) Business Model
Sensing as-a-Service - The New Internet of Things (IOT) Business Model
Dr. Mazlan Abbas
 
A Reference Architecture for IoT
A Reference Architecture for IoT A Reference Architecture for IoT
A Reference Architecture for IoT
WSO2
 
IoT Cloud architecture
IoT Cloud architectureIoT Cloud architecture
IoT Cloud architecture
MachinePulse
 
Internet of Things
Internet of ThingsInternet of Things
Internet of Things
Vala Afshar
 
FIWARE Developers Week_Managing context information at large scale_conference
FIWARE Developers Week_Managing context information at large scale_conferenceFIWARE Developers Week_Managing context information at large scale_conference
FIWARE Developers Week_Managing context information at large scale_conference
FIWARE
 
IBM informix: compared performance efficiency between physical server and Vir...
IBM informix: compared performance efficiency between physical server and Vir...IBM informix: compared performance efficiency between physical server and Vir...
IBM informix: compared performance efficiency between physical server and Vir...
BeGooden-IT Consulting
 
Informix SQL & NoSQL: Putting it all together
Informix SQL & NoSQL: Putting it all togetherInformix SQL & NoSQL: Putting it all together
Informix SQL & NoSQL: Putting it all together
Keshav Murthy
 
Introduction to ibm internet of things foundation
Introduction to ibm internet of things foundationIntroduction to ibm internet of things foundation
Introduction to ibm internet of things foundation
Bernard Kufluk
 
Fiware Developers Week IoT Agents (Advanced)
Fiware Developers Week IoT Agents (Advanced)Fiware Developers Week IoT Agents (Advanced)
Fiware Developers Week IoT Agents (Advanced)
dmoranj
 
ThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS - Emotion and the IoT - Scott SmithThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS - Emotion and the IoT - Scott Smith
ThingsConAMS
 
IoT Agents (Introduction)
IoT Agents (Introduction)IoT Agents (Introduction)
IoT Agents (Introduction)
dmoranj
 
Introduction to NoSQL and Couchbase
Introduction to NoSQL and CouchbaseIntroduction to NoSQL and Couchbase
Introduction to NoSQL and Couchbase
Cecile Le Pape
 
Utilizing Arrays: Modeling, Querying and Indexing
Utilizing Arrays: Modeling, Querying and IndexingUtilizing Arrays: Modeling, Querying and Indexing
Utilizing Arrays: Modeling, Querying and Indexing
Keshav Murthy
 
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Internet of Things (IoT) and Connected Cars - Patent Landscape Highlighting T...
Rahul Dev
 
Understanding N1QL Optimizer to Tune Queries
Understanding N1QL Optimizer to Tune QueriesUnderstanding N1QL Optimizer to Tune Queries
Understanding N1QL Optimizer to Tune Queries
Keshav Murthy
 
Ad

Similar to Accelerating analytics on the Sensor and IoT Data. (20)

Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce
Polyglot Persistence in the Real World: Cassandra + S3 + MapReducePolyglot Persistence in the Real World: Cassandra + S3 + MapReduce
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce
thumbtacktech
 
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiyTues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Anton Yazovskiy
 
eBay EDW元数据管理及应用
eBay EDW元数据管理及应用eBay EDW元数据管理及应用
eBay EDW元数据管理及应用
mysqlops
 
Hw09 Hadoop Based Data Mining Platform For The Telecom Industry
Hw09   Hadoop Based Data Mining Platform For The Telecom IndustryHw09   Hadoop Based Data Mining Platform For The Telecom Industry
Hw09 Hadoop Based Data Mining Platform For The Telecom Industry
Cloudera, Inc.
 
Transforming Mobile Push Notifications with Big Data
Transforming Mobile Push Notifications with Big DataTransforming Mobile Push Notifications with Big Data
Transforming Mobile Push Notifications with Big Data
plumbee
 
SQL Server 2008 for Developers
SQL Server 2008 for DevelopersSQL Server 2008 for Developers
SQL Server 2008 for Developers
ukdpe
 
Presentation
PresentationPresentation
Presentation
Dimitris Stripelis
 
IBM IoT Architecture and Capabilities at the Edge and Cloud
IBM IoT Architecture and Capabilities at the Edge and Cloud IBM IoT Architecture and Capabilities at the Edge and Cloud
IBM IoT Architecture and Capabilities at the Edge and Cloud
Pradeep Natarajan
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
Analytics with Spark
Analytics with SparkAnalytics with Spark
Analytics with Spark
Probst Ludwine
 
Data Modeling for IoT and Big Data
Data Modeling for IoT and Big DataData Modeling for IoT and Big Data
Data Modeling for IoT and Big Data
Jayesh Thakrar
 
04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore
mlraviol
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
WSO2
 
Sql on hadoop the secret presentation.3pptx
Sql on hadoop  the secret presentation.3pptxSql on hadoop  the secret presentation.3pptx
Sql on hadoop the secret presentation.3pptx
Paulo Alonso
 
Azure Stream Analytics : Analyse Data in Motion
Azure Stream Analytics  : Analyse Data in MotionAzure Stream Analytics  : Analyse Data in Motion
Azure Stream Analytics : Analyse Data in Motion
Ruhani Arora
 
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Spark Summit
 
Timeseries - data visualization in Grafana
Timeseries - data visualization in GrafanaTimeseries - data visualization in Grafana
Timeseries - data visualization in Grafana
OCoderFest
 
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce
Polyglot Persistence in the Real World: Cassandra + S3 + MapReducePolyglot Persistence in the Real World: Cassandra + S3 + MapReduce
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce
thumbtacktech
 
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiyTues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Anton Yazovskiy
 
eBay EDW元数据管理及应用
eBay EDW元数据管理及应用eBay EDW元数据管理及应用
eBay EDW元数据管理及应用
mysqlops
 
Hw09 Hadoop Based Data Mining Platform For The Telecom Industry
Hw09   Hadoop Based Data Mining Platform For The Telecom IndustryHw09   Hadoop Based Data Mining Platform For The Telecom Industry
Hw09 Hadoop Based Data Mining Platform For The Telecom Industry
Cloudera, Inc.
 
Transforming Mobile Push Notifications with Big Data
Transforming Mobile Push Notifications with Big DataTransforming Mobile Push Notifications with Big Data
Transforming Mobile Push Notifications with Big Data
plumbee
 
SQL Server 2008 for Developers
SQL Server 2008 for DevelopersSQL Server 2008 for Developers
SQL Server 2008 for Developers
ukdpe
 
IBM IoT Architecture and Capabilities at the Edge and Cloud
IBM IoT Architecture and Capabilities at the Edge and Cloud IBM IoT Architecture and Capabilities at the Edge and Cloud
IBM IoT Architecture and Capabilities at the Edge and Cloud
Pradeep Natarajan
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
Data Modeling for IoT and Big Data
Data Modeling for IoT and Big DataData Modeling for IoT and Big Data
Data Modeling for IoT and Big Data
Jayesh Thakrar
 
04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore
mlraviol
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
[WSO2Con EU 2017] Streaming Analytics Patterns for Your Digital Enterprise
WSO2
 
Sql on hadoop the secret presentation.3pptx
Sql on hadoop  the secret presentation.3pptxSql on hadoop  the secret presentation.3pptx
Sql on hadoop the secret presentation.3pptx
Paulo Alonso
 
Azure Stream Analytics : Analyse Data in Motion
Azure Stream Analytics  : Analyse Data in MotionAzure Stream Analytics  : Analyse Data in Motion
Azure Stream Analytics : Analyse Data in Motion
Ruhani Arora
 
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...
Spark Summit
 
Timeseries - data visualization in Grafana
Timeseries - data visualization in GrafanaTimeseries - data visualization in Grafana
Timeseries - data visualization in Grafana
OCoderFest
 
Ad

More from Keshav Murthy (20)

N1QL New Features in couchbase 7.0
N1QL New Features in couchbase 7.0N1QL New Features in couchbase 7.0
N1QL New Features in couchbase 7.0
Keshav Murthy
 
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Couchbase Tutorial: Big data Open Source Systems: VLDB2018Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Keshav Murthy
 
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
Keshav Murthy
 
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
Keshav Murthy
 
Couchbase 5.5: N1QL and Indexing features
Couchbase 5.5: N1QL and Indexing featuresCouchbase 5.5: N1QL and Indexing features
Couchbase 5.5: N1QL and Indexing features
Keshav Murthy
 
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram VemulapalliN1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
Keshav Murthy
 
Couchbase N1QL: Language & Architecture Overview.
Couchbase N1QL: Language & Architecture Overview.Couchbase N1QL: Language & Architecture Overview.
Couchbase N1QL: Language & Architecture Overview.
Keshav Murthy
 
Couchbase Query Workbench Enhancements By Eben Haber
Couchbase Query Workbench Enhancements  By Eben Haber Couchbase Query Workbench Enhancements  By Eben Haber
Couchbase Query Workbench Enhancements By Eben Haber
Keshav Murthy
 
Mindmap: Oracle to Couchbase for developers
Mindmap: Oracle to Couchbase for developersMindmap: Oracle to Couchbase for developers
Mindmap: Oracle to Couchbase for developers
Keshav Murthy
 
Couchbase N1QL: Index Advisor
Couchbase N1QL: Index AdvisorCouchbase N1QL: Index Advisor
Couchbase N1QL: Index Advisor
Keshav Murthy
 
N1QL: What's new in Couchbase 5.0
N1QL: What's new in Couchbase 5.0N1QL: What's new in Couchbase 5.0
N1QL: What's new in Couchbase 5.0
Keshav Murthy
 
From SQL to NoSQL: Structured Querying for JSON
From SQL to NoSQL: Structured Querying for JSONFrom SQL to NoSQL: Structured Querying for JSON
From SQL to NoSQL: Structured Querying for JSON
Keshav Murthy
 
Tuning for Performance: indexes & Queries
Tuning for Performance: indexes & QueriesTuning for Performance: indexes & Queries
Tuning for Performance: indexes & Queries
Keshav Murthy
 
Extended JOIN in Couchbase Server 4.5
Extended JOIN in Couchbase Server 4.5Extended JOIN in Couchbase Server 4.5
Extended JOIN in Couchbase Server 4.5
Keshav Murthy
 
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQLBringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Keshav Murthy
 
Query in Couchbase. N1QL: SQL for JSON
Query in Couchbase.  N1QL: SQL for JSONQuery in Couchbase.  N1QL: SQL for JSON
Query in Couchbase. N1QL: SQL for JSON
Keshav Murthy
 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
Keshav Murthy
 
Introducing N1QL: New SQL Based Query Language for JSON
Introducing N1QL: New SQL Based Query Language for JSONIntroducing N1QL: New SQL Based Query Language for JSON
Introducing N1QL: New SQL Based Query Language for JSON
Keshav Murthy
 
Enterprise Architect's view of Couchbase 4.0 with N1QL
Enterprise Architect's view of Couchbase 4.0 with N1QLEnterprise Architect's view of Couchbase 4.0 with N1QL
Enterprise Architect's view of Couchbase 4.0 with N1QL
Keshav Murthy
 
Deep dive into N1QL: SQL for JSON: Internals and power features.
Deep dive into N1QL: SQL for JSON: Internals and power features.Deep dive into N1QL: SQL for JSON: Internals and power features.
Deep dive into N1QL: SQL for JSON: Internals and power features.
Keshav Murthy
 
N1QL New Features in couchbase 7.0
N1QL New Features in couchbase 7.0N1QL New Features in couchbase 7.0
N1QL New Features in couchbase 7.0
Keshav Murthy
 
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Couchbase Tutorial: Big data Open Source Systems: VLDB2018Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Keshav Murthy
 
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
N1QL+GSI: Language and Performance Improvements in Couchbase 5.0 and 5.5
Keshav Murthy
 
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
XLDB Lightning Talk: Databases for an Engaged World: Requirements and Design...
Keshav Murthy
 
Couchbase 5.5: N1QL and Indexing features
Couchbase 5.5: N1QL and Indexing featuresCouchbase 5.5: N1QL and Indexing features
Couchbase 5.5: N1QL and Indexing features
Keshav Murthy
 
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram VemulapalliN1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
N1QL: Query Optimizer Improvements in Couchbase 5.0. By, Sitaram Vemulapalli
Keshav Murthy
 
Couchbase N1QL: Language & Architecture Overview.
Couchbase N1QL: Language & Architecture Overview.Couchbase N1QL: Language & Architecture Overview.
Couchbase N1QL: Language & Architecture Overview.
Keshav Murthy
 
Couchbase Query Workbench Enhancements By Eben Haber
Couchbase Query Workbench Enhancements  By Eben Haber Couchbase Query Workbench Enhancements  By Eben Haber
Couchbase Query Workbench Enhancements By Eben Haber
Keshav Murthy
 
Mindmap: Oracle to Couchbase for developers
Mindmap: Oracle to Couchbase for developersMindmap: Oracle to Couchbase for developers
Mindmap: Oracle to Couchbase for developers
Keshav Murthy
 
Couchbase N1QL: Index Advisor
Couchbase N1QL: Index AdvisorCouchbase N1QL: Index Advisor
Couchbase N1QL: Index Advisor
Keshav Murthy
 
N1QL: What's new in Couchbase 5.0
N1QL: What's new in Couchbase 5.0N1QL: What's new in Couchbase 5.0
N1QL: What's new in Couchbase 5.0
Keshav Murthy
 
From SQL to NoSQL: Structured Querying for JSON
From SQL to NoSQL: Structured Querying for JSONFrom SQL to NoSQL: Structured Querying for JSON
From SQL to NoSQL: Structured Querying for JSON
Keshav Murthy
 
Tuning for Performance: indexes & Queries
Tuning for Performance: indexes & QueriesTuning for Performance: indexes & Queries
Tuning for Performance: indexes & Queries
Keshav Murthy
 
Extended JOIN in Couchbase Server 4.5
Extended JOIN in Couchbase Server 4.5Extended JOIN in Couchbase Server 4.5
Extended JOIN in Couchbase Server 4.5
Keshav Murthy
 
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQLBringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Bringing SQL to NoSQL: Rich, Declarative Query for NoSQL
Keshav Murthy
 
Query in Couchbase. N1QL: SQL for JSON
Query in Couchbase.  N1QL: SQL for JSONQuery in Couchbase.  N1QL: SQL for JSON
Query in Couchbase. N1QL: SQL for JSON
Keshav Murthy
 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
SQL for JSON: Rich, Declarative Querying for NoSQL Databases and Applications 
Keshav Murthy
 
Introducing N1QL: New SQL Based Query Language for JSON
Introducing N1QL: New SQL Based Query Language for JSONIntroducing N1QL: New SQL Based Query Language for JSON
Introducing N1QL: New SQL Based Query Language for JSON
Keshav Murthy
 
Enterprise Architect's view of Couchbase 4.0 with N1QL
Enterprise Architect's view of Couchbase 4.0 with N1QLEnterprise Architect's view of Couchbase 4.0 with N1QL
Enterprise Architect's view of Couchbase 4.0 with N1QL
Keshav Murthy
 
Deep dive into N1QL: SQL for JSON: Internals and power features.
Deep dive into N1QL: SQL for JSON: Internals and power features.Deep dive into N1QL: SQL for JSON: Internals and power features.
Deep dive into N1QL: SQL for JSON: Internals and power features.
Keshav Murthy
 

Recently uploaded (20)

Foundation Models for Time Series : A Survey
Foundation Models for Time Series : A SurveyFoundation Models for Time Series : A Survey
Foundation Models for Time Series : A Survey
jayanthkalyanam1
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
DVDFab Crack FREE Download Latest Version 2025
DVDFab Crack FREE Download Latest Version 2025DVDFab Crack FREE Download Latest Version 2025
DVDFab Crack FREE Download Latest Version 2025
younisnoman75
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Creating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdfCreating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdf
Applitools
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AIScaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
danshalev
 
Expand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchangeExpand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchange
Fexle Services Pvt. Ltd.
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Apple Logic Pro X Crack FRESH Version 2025
Apple Logic Pro X Crack FRESH Version 2025Apple Logic Pro X Crack FRESH Version 2025
Apple Logic Pro X Crack FRESH Version 2025
fs4635986
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Foundation Models for Time Series : A Survey
Foundation Models for Time Series : A SurveyFoundation Models for Time Series : A Survey
Foundation Models for Time Series : A Survey
jayanthkalyanam1
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
DVDFab Crack FREE Download Latest Version 2025
DVDFab Crack FREE Download Latest Version 2025DVDFab Crack FREE Download Latest Version 2025
DVDFab Crack FREE Download Latest Version 2025
younisnoman75
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Creating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdfCreating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdf
Applitools
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AIScaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
danshalev
 
Expand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchangeExpand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchange
Fexle Services Pvt. Ltd.
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Apple Logic Pro X Crack FRESH Version 2025
Apple Logic Pro X Crack FRESH Version 2025Apple Logic Pro X Crack FRESH Version 2025
Apple Logic Pro X Crack FRESH Version 2025
fs4635986
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 

Accelerating analytics on the Sensor and IoT Data.

  • 1. Accelerating Analytics for sensor (IoT) data Keshav Murthy Architect, IBM Informix [email protected] 1
  • 2. 2 Explosion of mobile devices – gaming and social apps Advertising: serving ads and real-time bidding Social networking, online communities E-commerce, social commerce Machine data and real-time operational decisions Smart Devices Internet of Things Internet of Things
  • 3. 3 Explosion of mobile devices – gaming and social apps Advertising: serving ads and real-time bidding Social networking, online communities E-commerce, social commerce Machine data and real-time operational decisions Smart Devices Internet of Data, really Internet of Things SQL SQL, {JSON}, Spatial {JSON}, TimeSeries SQL, {JSON} Simple, {JSON}, Timeseries SQL, {JSON}
  • 4. 4 IoT Applications – IBM Reference Architecture Gateway Operational Zone Warehouse/Mart Analytics Services and Contents Shared Operational Information Rule Engine ETL Real-Time Data Store Hadoop Video Analytics Big Data Explorer Analytic Tools Connected Device Analyzed Data MapReduce HDFS/GPFS Device Management : Predictive Maintenance Traffic Optimization Driving Behavior Incident Analysis Infotainment Service Raw Data Summarized Data Notification Analytic Report B2C/B2B Portal Admin Console Operator Console LocalIntelligence NetworkSupport Stream Processing ETL RDB DataMart SOE Data Video Management Asset Data Management Master Data Management Reference Data Hub Video Data .. Environment Data, etc. Other Data Local Database
  • 5. 5 IoT Applications – IBM Reference Architecture Gateway Operational Zone Warehouse/Mart Analytics Services and Contents Shared Operational Information Rule Engine ETL Real-Time Data Store Hadoop Video Analytics Big Data Explorer Analytic Tools Connected Device Analyzed Data MapReduce HDFS/GPFS Device Management : Predictive Maintenance Traffic Optimization Driving Behavior Incident Analysis Infotainment Service Raw Data Summarized Data Notification Analytic Report B2C/B2B Portal Admin Console Operator Console LocalIntelligence NetworkSupport Stream Processing ETL RDB DataMart SOE Data Video Management Asset Data Management Master Data Management Reference Data Hub Video Data .. Environment Data, etc. Other Data Local Database Scenarios for Informix
  • 6. © 2014 IBM Corporation6 IBM Cloud: Think it. Build it. Tap into it.IoT Solutions, an architecture. Collection of data for all sensors Data from other kinds of sensors Consumer / Business Sensors in the home Informix TimeSeries Service NoSQL, Relational, Timeseries & Spatial storage & analytics Informix Warehouse Accelerator SPSS/Cognos MessageSight / MQTT SoftLayer / BlueMix BigInsights Gateways for data consolidation Infosphere Streams (no gateway) = IBM products = IBM Informix Relational Database In-memory analytics Predictive analytics and dashboard Cloud infrastructure Hadoop Publish / Subscribe Real-time analytics
  • 7. • Individual Car Recognition in the parking zone •Composite sensors to transmit license image • Picture,location,weight,color,etc •Cloud service to recognize the car plate number •Gateway is the orchestrator: collection, sync, service
  • 8. Myriad of devices for gateways: Intel Galileo, ARM based boards. Shaspa embedded Informix into its stack for sensor data mgmt. IBM Informix developer edition. Download Now: http://www-03.ibm.com/software/products/en/infodeveedit
  • 11. IBM Bluemix: IoT Service IBM Bluemix: IBM Internet of things Service
  • 12. 12 SQL {NoSQL:JSON} Define Schema first Write the program first Relational Key-value, Document, column family, graph and text Changing schema is hard Assumes dynamic schema Scale-up Scale-out ACID consistency BASE consistency Transactions No Transactions SQL Proprietary API; Sometimes has the “spirit” of SQL
  • 13. 13 SQL Timeseries Define Schema first Create Timeseries Row Type Relational Timeseries Optimized with projection to relational; Often used with Spatial data Changing schema is hard Changing schema is hard; Flexible with Timeseries({JSON}) Scale-up Scale-up & Scale-out ACID consistency ACID consistency SQL SQL extensions; Relational projection.
  • 14. Data Management: devices to Cloud Enterprise replication + Flexible Grid App Server JDBC App Server Mongo Driver Listener Informix/1 Primary Informix/1 SDS/HDR Informix/1 RSS Informix/2 Primary Informix/2 SDS/HDR Informix/2 RSS Informix/3 Primary Informix/3 SDS/HDR Informix/3 RSS Informix/4 Primary Informix/4 SDS/HDR Informix/4 RSS Informix/5 Primary Informix/5 SDS/HDR Informix/5 RSS Informix/6 Primary Informix/6 SDS/HDR Informix/6 RSS Mongo API Node.JS Express.JS AngularJS REST APIs NoSQL SQLCloud Informix warehouse Accelerator
  • 15. Informix: All Together Now! 15 SQL Tables JSON Collections TimeSeries MQ Series SQL APIs JDBC, ODBC Informix IWA – BLU ACCELERATION GENBSON: SQL to {BSON} MongoDB Drivers TEXT SEARCH SPATIAL TIME SERIES {BSON}
  • 16. SQL API Mongo API (NoSQL) Relational Table JSON Collections Standard ODBC, JDBC, .NET, OData, etc. Language SQL. Mongo APIs for Java, Javascript, C++, C#,... Direct SQL Access. Dynamic Views Row types Mongo APIs for Java, Javascript, C++, C#,... JSON CollectionsJSON Collections Standard SQL/ext JDBC/ODBC JSON Support Virtual Table JSON support TimeseriesJSON Collections TimeseriesRelational Table JSON Timeseries Spatial Text Standard SQL JDBC/ODBC JSON Support JSON Support Hybrid Access: SQL, JSON, Timeseries & Spatial
  • 17. 1 1-1-11 12:00 Value 1 Value 2 …….. Value N 2 1-1-11 12:00 Value 1 Value 2 …….. Value N 3 1-1-11 12:00 Value 1 Value 2 …….. Value N … … … … …….. … 1 1-1-11 12:15 Value 1 Value 2 …….. Value N 2 1-1-11 12:15 Value 1 Value 2 …….. Value N 3 1-1-11 12:15 Value 1 Value 2 …….. Value N … … … … …….. … Relational Schema: Smart Meters Sensor Smart_Meters Table •Each row contains one record = billions of rows in the table •All data is indexed for efficient lookups •Data is appended to the end of the table as it arrives •Meter ID’s stored in every record •No concept of a missing row TableGrows KWH Voltage ColNTimeMeter_id Index all columns
  • 18. 1 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …] 2 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …] 3 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …] 4 [(1-1-11 12:00, value 1, value 2, …, value N), (1-1-11 12:15, value 1, value 2, …, value N), …] … … •Each row contains all the data for a single meter, data append to end of the row •Data is not indexed, only the meter ID column is indexed •Data on disk is clustered by meter id and kept ordered by time •Meter IDs stored once rather than with every record •Timestamps are not stored on disk, instead are calculated by position in series •Missing intervals are marked with a placeholder Smart_Meters Sensor table Table grows Meter_id Timeseries(mysensor) Same Table using Informix TimeSeries Schema (logical view) Index Create row type mysensor(ts datetime year to fraction(5), value1 int, value2 float, …..valuen int);
  • 19. Physical View of Informix TimeSeries Data Container1 Container2 Container3 meter_id vee_interval_ts 1 2 3 4 5 7 8 (int) timeseries(mysensor) 6 Each Container typically placed on a separate disk vee_interval_table Table
  • 20. Accessing TimeSeries •Access through standard tabular view –Virtual Table Interface (VTI) –Makes TimeSeries look like a standard relational table •SQL Interface –100+ functions •Customized functions –Written in Stored Procedure Language (SPL), “C”, Java –65+ “C” functions
  • 21. TimeSeries SQL Interface •TimeSeries data is usually accessed through user defined routines (UDR’s) from SQL, some of these are: –Clip() – Access a subset of data from a time series –LastElem(), FirstElem() - return the last (first) element in the time series –Apply() – Filter out time series rows and apply functions to those that remain –AggregateBy() – Rollup time series data to be hourly/daily/yearly or custom intervals –SetContainerName() - move a time series from one container to another. –Transpose() – Make a time series appear to be a table –MovingAvg() – Create a time series of the moving average –Plus nearly 100 other functions…
  • 22. Virtual Table Interface makes Time Series data appear Relational mtr_id Series (int) timeseries(mtr_data) SM_vt 1 Tue Value 1 1 Wed Value 1 ... ... 3 Mon Value 1 3 Tue Value 1 3 Wed Value 1 ... ... ... ... 1 Mon Value 1 Value 2 col_1 col_2datemtr_id Smart_meter ... ... ... ... ... ... ... ... TimeSeries Table TimeSeries Virtual Table Execute procedure tscreatevirtualtable [(Mon, v1, ...)(Tue,v1…)] (‘SM_vt’, ‘Smart_meter’); 8 7 6 5 4 3 2 1 [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] [(Mon, v1, ...)(Tue,v1…)] ... Value 2 Value 2 Value 2 Value 2 Value 2 ...
  • 23. select min(tstamp), max(tstamp) from ts_data_v; select first 3 state,avg(value) average from ts_data_v v, customer_ts_data l, customer c where v.loc_esi_id = l.loc_esi_id and l.customer_num = c.customer_num group by 1 order by 2 desc; Querying on the VTI Table
  • 24. IoT - Devices Informix Timeseries Tables Timeseries VTI Tables DataLoader JSON Data Files MiddlewareProcessing JSON Managing Variety: Data flow for IoT Data IoT - Devices
  • 25. Managing Variety: IoT Model Makeover Before: CREATE ROW TYPE mysensor (ts DATETIME YEAR TO FRACTION(5), tag1 FLOAT, tag2 FLOAT, tag3 FLOAT, tag5 FLOAT,tag6 FLOAT,tag6 FLOAT,tag7 FLOAT,tag8 FLOAT, tag9 FLOAT,tag10 FLOAT,tag11 FLOAT,tag12 FLOAT,tag13 FLOAT,tag15 FLOAT,tag16 FLOAT,tag17 FLOAT,tag18 FLOAT,tag19 FLOAT,tag20 FLOAT,tag21 FLOAT,tag22 FLOAT,tag23 FLOAT,tag24 FLOAT,tag26 FLOAT,tag27 FLOAT,tag28 FLOAT,tag …. tag147 FLOAT,tag148 FLOAT,tag149 FLOAT,tag150 FLOAT); AFTER: CREATE ROW TYPE mysensor (stime DATETIME YEAR TO FRACTION(5), jdata BSON)
  • 26. Informix Timeseries Tables Timeseries VTI Tables IoT - Devices DataLoader JSON Data Files MiddlewareProcessing JSON type id Usage Timeseries(IFXTSBSON) “XA” 12 (2014-01-01 01:21:000, {x:1,y:2}), (2014-02-02 01:23:000, {x:3, y:5, z:42}) “XB” 48 (2014-01-01 01:21:000, {c:1,d:”ACND”}), (2014-04-02 01:23:000, {c:92,d:”MCBS”, e:42}) “XC” 23 (2015-01-01 01:21:000, {p:1,q:2}), (2015-03-02 01:23:000, {p:3, y:5, z:42}), Managing Variety using Timeseries(JSON) Data IoT - Devices
  • 27. Informix Timeseries Tables Timeseries VTI Tables Timeseries{JSON} => VTI-Table{JSON} type id Timeseries(IFXJSTYPE) “XA” 12 (2014-01-01 01:21:000, {x:1,y:2}), (2014-02-02 01:23:000, {x:3, y:5, z:42}) “XB” 48 (2014-01-01 01:21:000, {c:1,d:”ACND”}), (2014-04-02 01:23:000, {c:92,d:”MCBS”, e:42}) “XC” 23 (2015-01-01 01:21:000, {p:1,q:2}), (2015-03-02 01:23:000, {p:3, y:5, z:42}), type id Timestamp “XA” 12 2014-01-01 01:21:000 “XA” 12 2014-02-02 01:23:000 “XB” 48 2014-01-01 01:21:000 “XB” 48 2014-04-02 01:23:000 “XC” 23 2015-01-01 01:21:000 “XC” 23 2015-03-02 01:23:000 BSON/JSON {x:1,y:2} {x:3, y:5, z:42} {c:1,d:”ACND”} {c:92,d:”MCBS”, e:42} {p:1,q:2} {p:3, y:5, z:42}
  • 28. Timeseries on JSON CREATE ROW TYPE info( stime datetime year to fraction(5), jdata bson); CREATE TABLE iotdata(id int primary key, tsdata timeseries(info) ); INSERT INTO iotdata VALUES(472,'origin(2014-04-23 00:00:00.00000), …, regular,[({“temp":78, “wind":7.2, “loc":“Miami-1 "})]'); INSERT INTO iotdata values(384,'origin(2014-04-21 00:00:00.00000), …, regular,[({“sleep": 380, “steps":7423, “name":"Joe "})]'); SELECT GetFirstElem(tsdata,0)::row(timestamp datetime year to fraction(5), jdata json) FRONM tj; (expression) ROW('2014-04-21 00:00:00.00000','{“temp":78,“wind":7.2,“loc":“Miami-1"}') (expression) ROW('2014-04-21 00:00:00.00000','{“sleep":380,“steps":7423,“name":"Joe "}')
  • 29. Timeseries on JSON Execute procedure TSCreateVirtualTab(…); -- Equivalent relational schema CREATE TABLE iotvti(id INT PRIMARY KEY, stime DATETIME YEAR TO FRACTION(5)), jdata BSON); SELECT id, jdata.temp::int, jdata.loc.city.zip::varchar(32) FROM iotvti WHERE jdata.temp > 75; db.iotvti.find({“jdata.temp”:{$gt:75}, {jdata:1}, {jdata:1}); {“temp":78, “wind":7.2, “loc":“Miami-1 "}
  • 30. Informix REST API •REpresentational State Transfer http://<hostname>[:<port#>]/<db>/<collection> •Integrated into Informix •GET /demo/people?sort={age:-1}&fields={_id:0,lastName:0} RESPONSE: [{"firstName":"Anakin","age":49}, {"firstName":"Padme","age":47}, {"firstName":"Luke","age":31}, {"firstName":"Leia","age":31}] GET /stores_demo/ts_data_v?query={loc_esi_id:"4727354321046021"}
  • 31. Available Methods Method Path Description POST / Create a new database POST /db Create a new collection POST /db/collection Creates a new document GET / Database listing GET /db Collection listing GET /db/collection Query the collection DELETE / Drop all databases DELETE /db Drop a database DELETE /db/collection Drop a collection DELETE /db/collection?query={...} Delete documents that satisfy the query from a collection PUT /db/collection Update a document INFORMIX REST API
  • 32. ODBC, JDBC connections Informix Dynamic Server Tables Tables Relational Tables and views JSON Collections {Customer} partners SQL & BI Applications {Orders} CRM Inventory Tables Timeseries Tables {mobile/devices} Analytics
  • 33. Informix Database Server Informix warehouse Accelerator BI Applications Step 1. Install, configure, start Informix Step 2. Install, configure, start Accelerator Step 3. Connect Studio to Informix & add accelerator Step 4. Design, validate, Deploy Data mart Step 5. Load data to accelerator Ready for Queries IBM Smart Analytics Studio Step 1 Step 2 Step 3 Step 4 Step 5 Ready Informix Ultimate Warehouse edition
  • 34. 34 INTEL/IWA: Breakthrough technologies for performance 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1. Large memory support 64-bit computing; System X with MAX5 supports up to 6TB on a single SMP box; Up to 640GB on each node of blade center. IWA: Compress large dataset and keep it in memory; totally avoid IO. 7. Multi-core, multi-node environment Nehalem has 8 cores and Westmere 10 cores. This trend is expected to continue. IWA: Parallelize the scan, join, group operations. Keep copies of dimensions to avoid cross-node synchronization. 4. Virtualization Performance Lower overhead: Core micro-architecture enhancements, EPT, VPID, and End-to-End HW assist IWA: Helps informix and IWA to seemlessly run and perform in virtualized environment. 5. Hyperthreading 2x logical processors; increases processor throughput and overall performance of threaded software. IWA: Does not exploit this since the software is written to avoid pipeline flushing. 3. Frequency Partitioning IWA: Enabler for the effective parallel access of the compressed data for scanning. Horizontal and Vertical Partition Elimination. 2. Large on-chip Cache L1 cache 64KB per core, L2 cache is 256KB per core and L3 cache is about 4-12 MB. Additional Translation lookaside buffer (TLB). IWA: New algorithms to avoid pipeline flushing and cache hash tables in L2/L3 cache 6. Single Instruction Multiple Data Specialized instructions for manipulating 128-bit data simultaneously. IWA: Compresses the data into deep columnar fashion optimized to exploit SIMD. Used in parallel predicate evaluation in scans.
  • 35. 35 Informix Primary Informix warehouse Accelerator BI Applications Step 1. Install, configure, start Informix Step 2. Install, configure, start Accelerator Step 3. Connect Studio to Informix & add accelerator Step 4. Design, validate, Deploy Data mart from Primary, SDS, HDR, RSS Step 5. Add IWA to sqlhosts Load data to Accelerator from any node. Ready for Queries IBM Smart Analytics Studio Step 1 Step 3 Step 4 Step 5 Ready Informix Warehouse Accelerator – 11.70.FC5. MACH11 Support Informix SDS1 Informix SDS2 Informix HDR Secondary Informix RSS Step 2
  • 36. Design DM by workload analysis or manually Deployed datamart Datamart Deleted Datamart in USE Datamart Disabled Partition based refresh Trickle feed refresh Deploy Load Drop Disable Enable Drop Typically, 300 GB/hr 10 GB under 3 mins Online operation Stages & Options for data loading to IWA
  • 37. IWA 1st Release On SMP SMB: IGWE Scale out: IWA on Blade ServerWorkload Analysis Tool More Locales Data Currency IWA: Roadmap Partition Refresh MACH11 support Solaris on Intel Automatic data refresh Union queries Derived tables OAT Integration SQL/OLAP for IWA Timeseries Acceleration 11.7xC2 11.7xC5 12.1xC1 11.7xC3 11.7xC4 2012 IIUG 2013 IIUG TS Data Refresh improvements; Quicker to analysis 12.10.xC2 12.10.xC3 View sup Synonym NoSQL
  • 38. Informix Dynamic Server Tables Tables Relational Tables and views JSON Collections {Customer} partners SQL & BI Applications {Orders} CRM Inventory Tables Timeseries Tables {Orders} Text index (BTS) spatial indices Informix Warehouse Accelerator – In-Memory Query Engine ODBC, JDBC connections SQL Apps/Tools MongoDB Drivers NoSQL Apps/Tools
  • 39. IWA: Complex Data Analysis Informix Database Server Informix Warehouse Accelerator BI Applications Informix Database Server Factdim1 Dim4 - View dim3 dim2 dim2Informix IoT ApplicationsLoB Apps IoT Applications BI Applications Mobile Apps Informix
  • 40. IWA: sensor Data Analysis Informix Database Server Informix Warehouse Accelerator Informix Database Server SQL Table SQL View SQL Table SQL Table SQL TableInformix LoB Apps IoT Applications BI Applications Mobile Apps Informix Timeseries {JSON} {JSON} Cognos SQL Table
  • 41. ODBC, JDBC connections Informix Dynamic Server Tables Tables Relational Tables and views JSON Collections {Customer} partners SQL & BI Applications {Orders} CRM Inventory Tables Timeseries Tables {mobile/devices} Analytics Informix warehouse Accelerator
  • 42. Create the TS VTI Table TSCreateVirtualTab(); Create Data mart Ifx_TSDW_setCalendar() Ifx_TSDW_CreateWindow( ) Ifx_TSDW_updatePartition( ) Datamart in USE Timeseries data mart Deploy & load Mart; ifx_TSDW_moveWindows()
  • 43. insert into calendartable (c_name, c_calendar) values ('2010monthly', 'startdate(2010-01-01 00:00:00.00000), pattstart(2010-01-01 00:00:00.00000), pattern({1 on},month)'); execute function ifx_TSDW_setCalendar('my_accel', 'my_mart', 'my_owner', 'my_table', '2010monthly'); ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 0, 3); ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 12, 15); ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table', 24, 27); or, by using time stamps to identiy the virtual partitions ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table',’2010-01'::datetime year to month, '2010-04'::datetime year to ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table','2011-01'::datetime year to month, '2011-04'::datetime year to ifx_TSDW_createWindow('my_accel', 'my_mart', 'my_owner', 'my_table','2012-01'::datetime year to month, '2012-04'::datetime year to time 201220112010 TSVTdata onaccelerator, partitioned monthly time 201220112010
  • 44. execute function ifx_TSDW_updatePartition ( 'demo_dwa','demo_mart','informix','ts_data_v', '2011-02'::datetime year to month); execute function ifx_TSDW_dropWindow ( 'demo_dwa','demo_mart','informix','ts_data_v', '2011-02'::datetime year to month);
  • 45. Informix TimeSeries: Key Strengths • What is a Time Series? – A logically connected set of records ordered by time • Informix Performance – Time series queries run 60 times or more faster than relational only – Performs operations hard or impossible to run in standard SQL – Data loaders tuned to handle time series data • Informix Space Savings – Saves at least 50% over standard relational layout – Timeseries(JSON) handles variety of sensor data optimally • Informix Flexibility – Develop proprietary algorithms to run inside the database – Join time series, relational, and spatial data in the same query • Informix Ease-of-Use – Integrates easily with any ODBC/JDBC based tools and applications – Conceptually closer to how users think of time series • Informix Warehouse Accelerator – Load standard SQL data types – Exploit VTI projection of timeseries to integrate with tools like Cognos – Use window management procedures to load specific
  • 46. Informix: All Together Now! 46 SQL Tables JSON Collections TimeSeries MQ Series SQL APIs JDBC, ODBC Informix IWA – BLU ACCELERATION GENBSON: SQL to {BSON} MongoDB Drivers TEXT SEARCH SPATIAL TIME SERIES {BSON}