SlideShare a Scribd company logo
ACID ORC, Iceberg
and Delta Lake
Michal Gancarski
michal.gancarski@zalando.de
17-10-2019
an overview of table formats
for large scale storage and analytics
wssbck
2
TABLE OF
CONTENTS
All Is Not Well In The Land Of Big Data
There Is Hope, However
This Is How We Do It
Moving Forward
3
All Is Not Well
In The Land Of Big Data
4
ACID Properties
5
Single Node Database
6
Distributed Database
7
Distributed Data Infrastructure
8
Lost ACID
9
There Is Hope, However
10
A Table Format?
11
ACID ORC
12
ACID ORC
./d_manufacturers/country=de/base_00000002/
-- bucket_00000
-- bucket_00001
./d_manufacturers/country=de/delta_0000003_0000003_0000/
-- bucket_00000
-- bucket_00001
./d_manufacturers/country=de/delta_0000004_0000004_0000/
-- bucket_00001
./d_manufacturers/country=de/delete_delta_0000004_0000004_0000/
-- bucket_00001
CREATE TABLE d_manufacturers (id int, name string)
PARTITIONED BY (country string)
STORED AS ORC
TBLPROPERTIES ('transactional'='true');
13
ACID ORC
❖ Native compatibility with Hive
❖ Fast updates / upserts (no file rewrite)
❖ Hive 2.x ACID ORC tables can be converted to
Hive 3.x ACID ORC tables
❖ Commercial Support (Cloudera)
❖ Limited support for Spark (being worked on by
Qubole)
❖ Slow listing and metadata discovery
❖ Potentially slower read due to ad-hoc compaction
❖ ORC only
❖ Mandatory S3Guard or EMR with consistent view
enabled
+
-
14
Apache Iceberg
15
Apache Iceberg
val df = spark.read
.format("iceberg")
.load("s3://datalake/d_manufacturers")
16
Apache Iceberg
❖ Parquet, Avro, ORC supported as file formats
❖ Robust schema and partitioning changes
❖ Fast query planning
❖ Presto connector
❖ Time travel with snapshot id listing
❖ No dependency on Spark
public List<Snapshot> snapshots() {
return snapshots;
}
❖ Spark support
❖ Sparse documentation
❖ No commercial support
❖ Not as mature as other formats
+
-
17
Delta Lake
18
Delta Lake
./d_manufacturers/_delta_log/
-- 000000.json
-- ...
-- 000010.checkpoint.parquet
-- _latest_checkpoint
./d_manufacturers/country=de/
-- file_1.parquet
-- file_2.parquet
./d_manufacturers/country=fr/
-- file_3.parquet
val df = spark.read
.format("delta")
.load("s3://datalake/d_manufacturers")
CONVERT TO DELTA parquet.`s3://datalake/d_manufacturers`
19
Delta Lake
❖ Great integration with Spark, including Structured
Streaming
❖ Merge syntax in Spark SQL
❖ Time travel
❖ Comprehensive, well written documentation
❖ Fast development backed by a commercial entity
❖ VACUUM + OPTIMIZE
❖ Incoming Presto reader (Starburst)
❖ Parquet only
❖ Multicluster writes outside of Databricks only on HDFS
+
-
20
This Is How We Do It
21
Delta Lake @Zalando
22
Moving Forward
23
The Future is Bright
24
Further Reading
ACID ORC
https://orc.apache.org/docs/acid.html
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
http://shzhangji.com/blog/2019/06/10/understanding-hive-acid-transactional-table/
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.0.0/using-hiveql/content/hive_3_internals.html
Iceberg
https://iceberg.apache.org/
https://iceberg.apache.org/spec/
https://github.com/apache/incubator-iceberg
https://www.youtube.com/watch?v=z7p_m17BXs8
https://www.youtube.com/watch?v=nWwQMlrjhy0
Delta Lake
https://delta.io/
https://github.com/delta-io
https://github.com/delta-io/delta/blob/master/PROTOCOL.md
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
25
Further Reading
Engine Support
https://github.com/prestosql/presto/issues/576
https://github.com/prestosql/presto/issues/1324
https://github.com/prestosql/presto/pull/1067
https://docs.databricks.com/delta/presto-compatibility.html
https://www.starburstdata.com/technical-blog/starburst-presto-databricks-delta-lake-support/
https://www.qubole.com/blog/qubole-open-sources-multi-engine-support-for-updates-and-deletes-in-data-lakes/
https://github.com/qubole/spark-acid
S3 Consistency
https://issues.apache.org/jira/browse/HADOOP-13345
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
Other
https://www.postgresql.org/docs/current/storage.html
https://www.postgresql.org/docs/current/routine-vacuuming.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://medium.com/@brunocrt/the-distributed-architecture-behind-cassandra-database-fba8b5cc4785
https://github.com/delta-io/delta/issues/41
26
ACID ORC, Iceberg
and Delta Lake
Michal Gancarski
michal.gancarski@zalando.de
wssbck
Ad

More Related Content

What's hot (20)

How Uber scaled its Real Time Infrastructure to Trillion events per day
How Uber scaled its Real Time Infrastructure to Trillion events per dayHow Uber scaled its Real Time Infrastructure to Trillion events per day
How Uber scaled its Real Time Infrastructure to Trillion events per day
DataWorks Summit
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Flink Forward
 
The Apache Spark File Format Ecosystem
The Apache Spark File Format EcosystemThe Apache Spark File Format Ecosystem
The Apache Spark File Format Ecosystem
Databricks
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Data Science Across Data Sources with Apache Arrow
Data Science Across Data Sources with Apache ArrowData Science Across Data Sources with Apache Arrow
Data Science Across Data Sources with Apache Arrow
Databricks
 
iceberg introduction.pptx
iceberg introduction.pptxiceberg introduction.pptx
iceberg introduction.pptx
Dori Waldman
 
A Deep Dive into Kafka Controller
A Deep Dive into Kafka ControllerA Deep Dive into Kafka Controller
A Deep Dive into Kafka Controller
confluent
 
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache KafkaKafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kai Wähner
 
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
GetInData
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Presto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation EnginesPresto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation Engines
Databricks
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
Whoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
Whoops, The Numbers Are Wrong! Scaling Data Quality @ NetflixWhoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
Whoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
DataWorks Summit
 
How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...
DataWorks Summit/Hadoop Summit
 
Druid deep dive
Druid deep diveDruid deep dive
Druid deep dive
Kashif Khan
 
Change data capture
Change data captureChange data capture
Change data capture
Ron Barabash
 
Open core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineageOpen core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineage
Julien Le Dem
 
How Uber scaled its Real Time Infrastructure to Trillion events per day
How Uber scaled its Real Time Infrastructure to Trillion events per dayHow Uber scaled its Real Time Infrastructure to Trillion events per day
How Uber scaled its Real Time Infrastructure to Trillion events per day
DataWorks Summit
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Flink Forward
 
The Apache Spark File Format Ecosystem
The Apache Spark File Format EcosystemThe Apache Spark File Format Ecosystem
The Apache Spark File Format Ecosystem
Databricks
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Data Science Across Data Sources with Apache Arrow
Data Science Across Data Sources with Apache ArrowData Science Across Data Sources with Apache Arrow
Data Science Across Data Sources with Apache Arrow
Databricks
 
iceberg introduction.pptx
iceberg introduction.pptxiceberg introduction.pptx
iceberg introduction.pptx
Dori Waldman
 
A Deep Dive into Kafka Controller
A Deep Dive into Kafka ControllerA Deep Dive into Kafka Controller
A Deep Dive into Kafka Controller
confluent
 
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache KafkaKafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kai Wähner
 
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
Best Practices for ETL with Apache NiFi on Kubernetes - Albert Lewandowski, G...
GetInData
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Presto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation EnginesPresto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation Engines
Databricks
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
Whoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
Whoops, The Numbers Are Wrong! Scaling Data Quality @ NetflixWhoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
Whoops, The Numbers Are Wrong! Scaling Data Quality @ Netflix
DataWorks Summit
 
How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...
DataWorks Summit/Hadoop Summit
 
Change data capture
Change data captureChange data capture
Change data capture
Ron Barabash
 
Open core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineageOpen core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineage
Julien Le Dem
 

Similar to ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scale Storage and Analytics (20)

Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Nelson Calero
 
Load demo-oct2016
Load demo-oct2016Load demo-oct2016
Load demo-oct2016
Meline Nikoghossian
 
Oracle sharding : Installation & Configuration
Oracle sharding : Installation & ConfigurationOracle sharding : Installation & Configuration
Oracle sharding : Installation & Configuration
suresh gandhi
 
DUG'20: 02 - Accelerating apache spark with DAOS on Aurora
DUG'20: 02 - Accelerating apache spark with DAOS on AuroraDUG'20: 02 - Accelerating apache spark with DAOS on Aurora
DUG'20: 02 - Accelerating apache spark with DAOS on Aurora
Andrey Kudryavtsev
 
Spark Intro @ analytics big data summit
Spark  Intro @ analytics big data summitSpark  Intro @ analytics big data summit
Spark Intro @ analytics big data summit
Sujee Maniyam
 
2017 10-oow-fma-application-containers-v01-final
2017 10-oow-fma-application-containers-v01-final2017 10-oow-fma-application-containers-v01-final
2017 10-oow-fma-application-containers-v01-final
Markus Flechtner
 
Experiences with Oracle SPARC S7-2 Server
Experiences with Oracle SPARC S7-2 ServerExperiences with Oracle SPARC S7-2 Server
Experiences with Oracle SPARC S7-2 Server
JomaSoft
 
Quick Guide to Refresh Spark skills
Quick Guide to Refresh Spark skillsQuick Guide to Refresh Spark skills
Quick Guide to Refresh Spark skills
Ravindra kumar
 
Oracle Application Containers
Oracle Application ContainersOracle Application Containers
Oracle Application Containers
Markus Flechtner
 
Introduction to Apache Spark
Introduction to Apache Spark Introduction to Apache Spark
Introduction to Apache Spark
Hubert Fan Chiang
 
MariaDB pres at LeMUG
MariaDB pres at LeMUGMariaDB pres at LeMUG
MariaDB pres at LeMUG
Serge Frezefond
 
Cowboy dating with big data TechDays at Lohika-2020
Cowboy dating with big data TechDays at Lohika-2020Cowboy dating with big data TechDays at Lohika-2020
Cowboy dating with big data TechDays at Lohika-2020
b0ris_1
 
Oracle RAC One Node 12c Overview
Oracle RAC One Node 12c OverviewOracle RAC One Node 12c Overview
Oracle RAC One Node 12c Overview
Markus Michalewicz
 
An Introduct to Spark - Atlanta Spark Meetup
An Introduct to Spark - Atlanta Spark MeetupAn Introduct to Spark - Atlanta Spark Meetup
An Introduct to Spark - Atlanta Spark Meetup
jlacefie
 
An Introduction to Spark
An Introduction to SparkAn Introduction to Spark
An Introduction to Spark
jlacefie
 
오라클 DR 및 복제 솔루션(Dbvisit 소개)
오라클 DR 및 복제 솔루션(Dbvisit 소개)오라클 DR 및 복제 솔루션(Dbvisit 소개)
오라클 DR 및 복제 솔루션(Dbvisit 소개)
Linux Foundation Korea
 
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォームPivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Masayuki Matsushita
 
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
Philippe Fierens
 
Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
 Lessons from the Field, Episode II: Applying Best Practices to Your Apache S... Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
Databricks
 
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIESORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
Ludovico Caldara
 
Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Automate Oracle database patches and upgrades using Fleet Provisioning and Pa...
Nelson Calero
 
Oracle sharding : Installation & Configuration
Oracle sharding : Installation & ConfigurationOracle sharding : Installation & Configuration
Oracle sharding : Installation & Configuration
suresh gandhi
 
DUG'20: 02 - Accelerating apache spark with DAOS on Aurora
DUG'20: 02 - Accelerating apache spark with DAOS on AuroraDUG'20: 02 - Accelerating apache spark with DAOS on Aurora
DUG'20: 02 - Accelerating apache spark with DAOS on Aurora
Andrey Kudryavtsev
 
Spark Intro @ analytics big data summit
Spark  Intro @ analytics big data summitSpark  Intro @ analytics big data summit
Spark Intro @ analytics big data summit
Sujee Maniyam
 
2017 10-oow-fma-application-containers-v01-final
2017 10-oow-fma-application-containers-v01-final2017 10-oow-fma-application-containers-v01-final
2017 10-oow-fma-application-containers-v01-final
Markus Flechtner
 
Experiences with Oracle SPARC S7-2 Server
Experiences with Oracle SPARC S7-2 ServerExperiences with Oracle SPARC S7-2 Server
Experiences with Oracle SPARC S7-2 Server
JomaSoft
 
Quick Guide to Refresh Spark skills
Quick Guide to Refresh Spark skillsQuick Guide to Refresh Spark skills
Quick Guide to Refresh Spark skills
Ravindra kumar
 
Oracle Application Containers
Oracle Application ContainersOracle Application Containers
Oracle Application Containers
Markus Flechtner
 
Introduction to Apache Spark
Introduction to Apache Spark Introduction to Apache Spark
Introduction to Apache Spark
Hubert Fan Chiang
 
Cowboy dating with big data TechDays at Lohika-2020
Cowboy dating with big data TechDays at Lohika-2020Cowboy dating with big data TechDays at Lohika-2020
Cowboy dating with big data TechDays at Lohika-2020
b0ris_1
 
Oracle RAC One Node 12c Overview
Oracle RAC One Node 12c OverviewOracle RAC One Node 12c Overview
Oracle RAC One Node 12c Overview
Markus Michalewicz
 
An Introduct to Spark - Atlanta Spark Meetup
An Introduct to Spark - Atlanta Spark MeetupAn Introduct to Spark - Atlanta Spark Meetup
An Introduct to Spark - Atlanta Spark Meetup
jlacefie
 
An Introduction to Spark
An Introduction to SparkAn Introduction to Spark
An Introduction to Spark
jlacefie
 
오라클 DR 및 복제 솔루션(Dbvisit 소개)
오라클 DR 및 복제 솔루션(Dbvisit 소개)오라클 DR 및 복제 솔루션(Dbvisit 소개)
오라클 DR 및 복제 솔루션(Dbvisit 소개)
Linux Foundation Korea
 
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォームPivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Masayuki Matsushita
 
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
Philippe Fierens
 
Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
 Lessons from the Field, Episode II: Applying Best Practices to Your Apache S... Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
Lessons from the Field, Episode II: Applying Best Practices to Your Apache S...
Databricks
 
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIESORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
ORACLE 12C DATA GUARD: FAR SYNC, REAL-TIME CASCADE STANDBY AND OTHER GOODIES
Ludovico Caldara
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 

ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scale Storage and Analytics