This document discusses neural networks and their applications. It begins with an overview of neurons and the brain, then describes the basic components of neural networks including layers, nodes, weights, and learning algorithms. Examples are given of early neural network designs from the 1940s-1980s and their applications. The document also summarizes backpropagation learning in multi-layer networks and discusses common network architectures like perceptrons, Hopfield networks, and convolutional networks. In closing, it notes the strengths and limitations of neural networks along with domains where they have proven useful, such as recognition, control, prediction, and categorization tasks.