SlideShare a Scribd company logo
Mbalawata, Isambi S., et al.
Computational Statistics & Data Analysis 83 (2015): 101-115.
Adaptive Metropolis Algorithm
Using Variational Bayesian Adaptive
Kalman Filter
Presenter : Shuuji Mihara
Abstract
1
 This Paper propose a new adaptive MCMC algorithm
called Variational Bayesian adaptive Metropolis(VBAM).
 The VBAM algorithm updates the proposal covariance
matrix using the Variational Bayesian adaptive Kalman
filter(VB-AKF).
 In the simulated experiments, VBAM perform better
than the AM algorithm of Harrio et al.
 In the real data examples, VBAM produced results
consisted with results reported literature.
Index 2
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
Index 3
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
What’s Statistical Problem? (1)
-Modeling- 4
Linear Regression State Space Model
𝒚 = 𝒘 𝑇 𝒙 + 𝝐
𝒙 𝑡= 𝐴𝒙 𝑡−1 + 𝜼
𝒚 𝑡 = 𝐻𝒙 𝑡 + 𝝐
What’s Statistical Problem? (1)
-Modeling- 5
Linear Regression State Space Model
𝒚 = 𝒘 𝑇 𝒙 + 𝝐
𝒙 𝑡= 𝐹𝒙 𝑡−1 + 𝜼
𝒚 𝑡 = 𝐻𝒙 𝑡 + 𝝐
Parameter 𝜽
What’s Statistical Problem?(2)
-Parameter Estimation- 6
Point Estimation
• Maximum Likelihood
→ EM algorithm
• Maximum a Posteriori (MAP)
Interval Estimation
• Bayes method
Variational Bayes
Marcov Chain Monte Carlo
𝜃
𝜃
posterior distribution
Index 7
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
MCMC
(Malkov Chain Monte Carlo Methods) 8
For many models of practical interest, it will be infeasible to
evaluate the posterior distribution or indeed to compute
expectations .
We need approximate scheme = MCMC
Metropolis Algorithm
Computing Expectation by MCMC 9
𝑬 𝑓 = 𝑓 𝑧 𝑝 𝜃 𝑑𝜃
𝑬 𝑓 ≈
1
𝑛
𝑠=1
𝑛
𝑓(𝜃(𝑠))
Computing Expectation is difficult
Sampling 𝜃(𝑠) by MCMC
Metropolis Algorithm 10
http://visualize-
mcmc.appspot.com/2_metropolis.html
1. Initialize 𝜃0, Σ
2. For 𝑘 = 1,2,3, …
I. 𝜃∗
~𝑁 𝜃 𝑘−1, Σ
II. 𝛼 = min 1,
𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀
𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀
III. 𝑢~𝑈(0,1)
IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗
𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1
Metropolis Algorithm :
Metropolis Algorithm 11
http://visualize-
mcmc.appspot.com/2_metropolis.html
1. Initialize 𝜃0, Σ
2. For 𝑘 = 1,2,3, …
I. 𝜃∗
~𝑁 𝜃 𝑘−1, Σ
II. 𝛼 = min 1,
𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀
𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀
III. 𝑢~𝑈(0,1)
IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗
𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1
Metropolis Algorithm :
proposed Gaussian distribution
Index 12
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
Adaptive Metropolis algorithm 13
The AM algorithm :
1. Initialize 𝜃0, Σ0
2. For 𝑘 = 1,2,3, …
I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1
II. 𝛼 = min 1,
𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀
𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀
III. 𝑢~𝑈(0,1)
IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗
𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1
V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using following equation
Σk = cov 𝜃0, 𝜃1, … , 𝜃 𝑘 + 𝜀𝐼
𝜆 = 2.38/𝑑2
where 𝑑 is the dimension of Σ
Introduced by recursion formula
Other adaptive algorithm 14
• regeneration-based adaptive algorithm [Gilks et al 1998]
• adaptive independent Metropolis-Hastings algorithm
[Holden et al 2009]
• Robust adaptive Metropolis(RAM) [Vihola 2012]
• MCMC integrated with differential evolution
[Vrugt et al 2009]
etc…
Index 15
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
Variational Bayesian Adaptive
Metropolis Algorithm 16
The VB-AM algorithm :
1. Initialize 𝜃0, Σ0
2. For 𝑘 = 1,2,3, …
I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1
II. 𝛼 = min 1,
𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀
𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀
III. 𝑢~𝑈(0,1)
IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗
𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1
V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using VB-AKF update step
Kalman Filter (1) 17
State Space Model
𝒙 𝑘 = 𝐴 𝑘−1 𝒙 𝑘−1 + 𝜼
𝒚 𝑘 = 𝐻 𝑘 𝒙 𝑘 + 𝝐
⇔
𝒙 𝑘 ~ 𝑁(𝐴 𝑘−1 𝒙 𝑘−1, 𝑄 𝑘−1)
𝒚 𝑘 ~ 𝑁(𝑦 𝑘 𝒙 𝑘−1, Σ 𝑘)
Kalman Filter (2) 18
true data 𝑥1:𝑇 observation 𝑦1:𝑇
Gaussian Noise
𝜀~𝑁(0, Σ)
Estimate by Kalman Filter
Kalman Filter(3) 19
known 𝜃 = (𝐴, 𝐻, 𝑄, Σ)objective : assume 𝑥 ⇔ {𝑚, 𝑃}
Prediction Step
𝑚 𝑘
−
= 𝐴 𝑘−1 𝑚 𝑘−1
𝑃𝑘
−
= 𝐴 𝑘−1 𝑃𝑘−1 𝐴 𝑘−1
𝑇
+ 𝑄 𝑘−1 (8)
Update Step
𝑆 𝑘 = 𝐻 𝑘 𝑃𝑘
−
𝐻 𝑘
𝑇
+ Σ 𝑘
𝐾𝑘 = 𝑃𝑘
−
𝐻 𝑘 𝑆 𝑘
−1
𝑚 𝑘 = 𝑚 𝑘
−
+ 𝐾𝑘 𝑦 𝑘 − 𝐻 𝑘 𝑚 𝑘
−
𝑃𝑘 = 𝑃𝑘
−
− 𝐾𝑘 𝑆 𝑘 𝐾𝑘
𝑇
(9)
Initialize 𝑚0, 𝑃0
algorithm
Iterate
For 𝑘 = 1,2, …
Recursive Least Square(RLS) 20
If 𝐴 𝑘−1 = 𝐼 𝑎𝑛𝑑 𝑄 𝑘−1 = 0 the Kalman filter reduces to
Recursive Least Square
𝑥
𝑦
VB-AKF
(Variational Bayes Adaptive Kalman Filter) 21
objective : assume 𝑥 ⇔ {𝑚, 𝑃} and tuning Σ
known 𝜃 = (𝐴, 𝐻, 𝑄, Σ) Σ:unknown
Initialize 𝑚0, 𝑃0, Σ0, 𝑣0
Prediction Step
Update Step Iterate
until Σ 𝑘 is convergence
Iterate
For 𝑘 = 1,2, …
algorithm
Variational Bayes 22
Computing 𝑝 𝑥 𝑘, Σ 𝑘 𝑦1:𝑘) is intractable.
free-form Variational Bayesian approximation
𝑝 𝑥 𝑘, Σ 𝑘 𝑦1:𝑘) ≈ 𝑄 𝑥 𝑥 𝑘 𝑄Σ(Σ 𝑘)
= 𝑵 𝒙 𝑘 𝒎 𝑘, 𝑷 𝑘)𝑰𝑾 Σ 𝑘 𝑣 𝑘, 𝑽 𝑘)
heuristic dynamic for the covariances
23
Such kind of dynamical model is hard to construct explicitly
Sarkka et al. proposed heuristic dynamic for the covariances
𝑣 𝑘
−
= 𝜌 𝑣 𝑘−1 − 𝑑 − 1 + 𝑑 + 1
Σ 𝑘
−
= 𝑩Σ 𝑘−1
−
𝑩 𝑇
(21)
VB-AKF
(Variational Bayes Adaptive Kalman Filter) 24
objective : assume 𝑥 ⇔ {𝑚, 𝑃} and tuning Σ
known 𝜃 = (𝐴, 𝐻, 𝑄, Σ) Σ:unknown
Initialize 𝑚0, 𝑃0, Σ0, 𝑣0
Prediction Step
Update Step Iterate
until Σ 𝑘 is convergence
Iterate
For 𝑘 = 1,2, …
algorithm
Index 25
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
Variational Bayesian Adaptive
Metropolis Algorithm 26
The VB-AM algorithm :
1. Initialize 𝜃0, Σ0
2. For 𝑘 = 1,2,3, …
I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1
II. 𝛼 = min 1,
𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀
𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀
III. 𝑢~𝑈(0,1)
IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗
𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1
V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using VB-AKF update step
Numerical Experiment 5.1 27
Numerical Experiment 5.2 28
Numerical Experiment 5.3 29
Numerical Experiment 5.4 30
Numerical Experiment 5.5 31
Index 32
1. Introduction – What’s Statistical Problem?
2. MCMC
3. Adaptive MCMC Methods
4. VB-AKF
5. VBAM
6. Numerical Experiments
7. Conclusion
Conclusion
33
 This Paper propose a new adaptive MCMC algorithm
called Variational Bayesian adaptive Metropolis(VBAM).
 The VBAM algorithm updates the proposal covariance
matrix using the Variational Bayesian adaptive Kalman
filter(VB-AKF).
 In the simulated experiments, VBAM perform better
than the AM algorithm of Harrio et al.
 In the real data examples, VBAM produced results
consisted with results reported literature.
Discussion 34
 The advantage of the proposed method is that it has
more parameters to tune , which gives more freedom.
 The computational requirements of VBAM method
𝑂 𝑑3 , while the usual AM is 𝑂(𝑑2).
 But these operations are still quite cheap compared
with MCMC sampling.
Future works 35
 replacing Kalman filter with non-linear Kalman filters
(ex) extended Kalman filter , Unscented Kalman filter
 particle filter (Rao-Blackwellized) could be used for
estimate the noise covariance.
 Compare proposal adaptation method using different
kinds of filters.
State Space Model(1) 36
State Space Model
𝑥2 𝑥 𝑇𝑥1
𝑦1 𝑦2 𝑦 𝑇
latent variable
observed variable
sys-eq
obs-eq

More Related Content

What's hot (20)

Optimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data PerspectiveOptimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data Perspective
পল্লব রায়
 
0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force
sean chen
 
Performance Assessment of Polyphase Sequences Using Cyclic Algorithm
Performance Assessment of Polyphase Sequences Using Cyclic AlgorithmPerformance Assessment of Polyphase Sequences Using Cyclic Algorithm
Performance Assessment of Polyphase Sequences Using Cyclic Algorithm
rahulmonikasharma
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
jawaharramaya
 
Control Systems
Control SystemsControl Systems
Control Systems
poongodi ravikumar
 
Block diagram
Block diagramBlock diagram
Block diagram
Sagar Kuntumal
 
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_systemBlock diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Prashant thakur
 
Block Diagram For Control Systems.
Block Diagram For Control Systems.Block Diagram For Control Systems.
Block Diagram For Control Systems.
Suleyman Demirel University
 
Block diagram
Block diagramBlock diagram
Block diagram
yash patel
 
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Voica Gavrilut
 
solver (1)
solver (1)solver (1)
solver (1)
Raj Mitra
 
Lecture 8-9 block-diagram_representation_of_control_systems
Lecture 8-9 block-diagram_representation_of_control_systemsLecture 8-9 block-diagram_representation_of_control_systems
Lecture 8-9 block-diagram_representation_of_control_systems
Saifullah Memon
 
Parallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
Parallel Algorithms: Sort & Merge, Image Processing, Fault ToleranceParallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
Parallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
University of Technology - Iraq
 
130070119095_2151908
130070119095_2151908130070119095_2151908
130070119095_2151908
nilesh vishwani
 
Modeling of mechanical_systems
Modeling of mechanical_systemsModeling of mechanical_systems
Modeling of mechanical_systems
Julian De Marcos
 
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORMDESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
sipij
 
PRAM algorithms from deepika
PRAM algorithms from deepikaPRAM algorithms from deepika
PRAM algorithms from deepika
guest1f4fb3
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
Nguyen_Tan_Tien
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
Amr E. Mohamed
 
Parallel sorting algorithm
Parallel sorting algorithmParallel sorting algorithm
Parallel sorting algorithm
Richa Kumari
 
Optimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data PerspectiveOptimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data Perspective
পল্লব রায়
 
0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force
sean chen
 
Performance Assessment of Polyphase Sequences Using Cyclic Algorithm
Performance Assessment of Polyphase Sequences Using Cyclic AlgorithmPerformance Assessment of Polyphase Sequences Using Cyclic Algorithm
Performance Assessment of Polyphase Sequences Using Cyclic Algorithm
rahulmonikasharma
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
jawaharramaya
 
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_systemBlock diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Block diagram &amp;_overall_transferfunction_of_a_multiloop_control_system
Prashant thakur
 
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Fault-tolerant topology and routing synthesis for IEEE time-sensitive network...
Voica Gavrilut
 
Lecture 8-9 block-diagram_representation_of_control_systems
Lecture 8-9 block-diagram_representation_of_control_systemsLecture 8-9 block-diagram_representation_of_control_systems
Lecture 8-9 block-diagram_representation_of_control_systems
Saifullah Memon
 
Parallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
Parallel Algorithms: Sort & Merge, Image Processing, Fault ToleranceParallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
Parallel Algorithms: Sort & Merge, Image Processing, Fault Tolerance
University of Technology - Iraq
 
Modeling of mechanical_systems
Modeling of mechanical_systemsModeling of mechanical_systems
Modeling of mechanical_systems
Julian De Marcos
 
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORMDESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
sipij
 
PRAM algorithms from deepika
PRAM algorithms from deepikaPRAM algorithms from deepika
PRAM algorithms from deepika
guest1f4fb3
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
Nguyen_Tan_Tien
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
Amr E. Mohamed
 
Parallel sorting algorithm
Parallel sorting algorithmParallel sorting algorithm
Parallel sorting algorithm
Richa Kumari
 

Similar to 論文紹介 Adaptive metropolis algorithm using variational bayesian (20)

Stability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithmsStability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithms
BigMC
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
Alexander Favorov
 
Hastings 1970
Hastings 1970Hastings 1970
Hastings 1970
Julyan Arbel
 
mcmc
mcmcmcmc
mcmc
Vasin Suntayodom
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Deep generative learning_icml_part1
Deep generative learning_icml_part1Deep generative learning_icml_part1
Deep generative learning_icml_part1
Scyfer
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Firefly exact MCMC for Big Data
Firefly exact MCMC for Big DataFirefly exact MCMC for Big Data
Firefly exact MCMC for Big Data
Gianvito Siciliano
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methods
Christian Robert
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptx
JimmyPhoenix2
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018
Christian Robert
 
Monte Carlo Berkeley.pptx
Monte Carlo Berkeley.pptxMonte Carlo Berkeley.pptx
Monte Carlo Berkeley.pptx
HaibinSu2
 
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Christian Robert
 
Markov chain monte_carlo_methods_for_machine_learning
Markov chain monte_carlo_methods_for_machine_learningMarkov chain monte_carlo_methods_for_machine_learning
Markov chain monte_carlo_methods_for_machine_learning
Andres Mendez-Vazquez
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Christian Robert
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo Methods
Francesco Casalegno
 
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS  Adaptive Algorithm for SIMO FIR Channel EstimationBlind PNLMS  Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
ardodul
 
Sampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo TechniquesSampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo Techniques
Tomasz Kusmierczyk
 
AcceleratingBayesianInference
AcceleratingBayesianInferenceAcceleratingBayesianInference
AcceleratingBayesianInference
Luca Carniato
 
Stability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithmsStability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithms
BigMC
 
Deep generative learning_icml_part1
Deep generative learning_icml_part1Deep generative learning_icml_part1
Deep generative learning_icml_part1
Scyfer
 
Firefly exact MCMC for Big Data
Firefly exact MCMC for Big DataFirefly exact MCMC for Big Data
Firefly exact MCMC for Big Data
Gianvito Siciliano
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methods
Christian Robert
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptx
JimmyPhoenix2
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018
Christian Robert
 
Monte Carlo Berkeley.pptx
Monte Carlo Berkeley.pptxMonte Carlo Berkeley.pptx
Monte Carlo Berkeley.pptx
HaibinSu2
 
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Christian Robert
 
Markov chain monte_carlo_methods_for_machine_learning
Markov chain monte_carlo_methods_for_machine_learningMarkov chain monte_carlo_methods_for_machine_learning
Markov chain monte_carlo_methods_for_machine_learning
Andres Mendez-Vazquez
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Christian Robert
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo Methods
Francesco Casalegno
 
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS  Adaptive Algorithm for SIMO FIR Channel EstimationBlind PNLMS  Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
ardodul
 
Sampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo TechniquesSampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo Techniques
Tomasz Kusmierczyk
 
AcceleratingBayesianInference
AcceleratingBayesianInferenceAcceleratingBayesianInference
AcceleratingBayesianInference
Luca Carniato
 
Ad

Recently uploaded (20)

Math arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is hereMath arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is here
rdarshankumar84
 
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
Alcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptxAlcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptx
DrShashank7
 
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdfBODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
SiddharthSean
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays New York 2025 - Open Source and disrupting the travel distribution ec...apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays
 
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays
 
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays
 
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGePSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
Tomas Moser
 
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays
 
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays
 
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdfAG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
Anass Nabil
 
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays
 
THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)
JishuHaldar
 
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
aishwaryavdcw
 
Math arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is hereMath arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is here
rdarshankumar84
 
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
Alcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptxAlcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptx
DrShashank7
 
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdfBODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
SiddharthSean
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays New York 2025 - Open Source and disrupting the travel distribution ec...apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays New York 2025 - Open Source and disrupting the travel distribution ec...
apidays
 
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays
 
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays New York 2025 - The FINOS Common Domain Model for Capital Markets by ...
apidays
 
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGePSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
Tomas Moser
 
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays New York 2025 - Building Scalable AI Systems by Sai Prasad Veluru (Ap...
apidays
 
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays
 
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdfAG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
Anass Nabil
 
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays
 
THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)
JishuHaldar
 
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
aishwaryavdcw
 
Ad

論文紹介 Adaptive metropolis algorithm using variational bayesian

  • 1. Mbalawata, Isambi S., et al. Computational Statistics & Data Analysis 83 (2015): 101-115. Adaptive Metropolis Algorithm Using Variational Bayesian Adaptive Kalman Filter Presenter : Shuuji Mihara
  • 2. Abstract 1  This Paper propose a new adaptive MCMC algorithm called Variational Bayesian adaptive Metropolis(VBAM).  The VBAM algorithm updates the proposal covariance matrix using the Variational Bayesian adaptive Kalman filter(VB-AKF).  In the simulated experiments, VBAM perform better than the AM algorithm of Harrio et al.  In the real data examples, VBAM produced results consisted with results reported literature.
  • 3. Index 2 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 4. Index 3 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 5. What’s Statistical Problem? (1) -Modeling- 4 Linear Regression State Space Model 𝒚 = 𝒘 𝑇 𝒙 + 𝝐 𝒙 𝑡= 𝐴𝒙 𝑡−1 + 𝜼 𝒚 𝑡 = 𝐻𝒙 𝑡 + 𝝐
  • 6. What’s Statistical Problem? (1) -Modeling- 5 Linear Regression State Space Model 𝒚 = 𝒘 𝑇 𝒙 + 𝝐 𝒙 𝑡= 𝐹𝒙 𝑡−1 + 𝜼 𝒚 𝑡 = 𝐻𝒙 𝑡 + 𝝐 Parameter 𝜽
  • 7. What’s Statistical Problem?(2) -Parameter Estimation- 6 Point Estimation • Maximum Likelihood → EM algorithm • Maximum a Posteriori (MAP) Interval Estimation • Bayes method Variational Bayes Marcov Chain Monte Carlo 𝜃 𝜃 posterior distribution
  • 8. Index 7 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 9. MCMC (Malkov Chain Monte Carlo Methods) 8 For many models of practical interest, it will be infeasible to evaluate the posterior distribution or indeed to compute expectations . We need approximate scheme = MCMC Metropolis Algorithm
  • 10. Computing Expectation by MCMC 9 𝑬 𝑓 = 𝑓 𝑧 𝑝 𝜃 𝑑𝜃 𝑬 𝑓 ≈ 1 𝑛 𝑠=1 𝑛 𝑓(𝜃(𝑠)) Computing Expectation is difficult Sampling 𝜃(𝑠) by MCMC
  • 11. Metropolis Algorithm 10 http://visualize- mcmc.appspot.com/2_metropolis.html 1. Initialize 𝜃0, Σ 2. For 𝑘 = 1,2,3, … I. 𝜃∗ ~𝑁 𝜃 𝑘−1, Σ II. 𝛼 = min 1, 𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀 𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀 III. 𝑢~𝑈(0,1) IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗ 𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1 Metropolis Algorithm :
  • 12. Metropolis Algorithm 11 http://visualize- mcmc.appspot.com/2_metropolis.html 1. Initialize 𝜃0, Σ 2. For 𝑘 = 1,2,3, … I. 𝜃∗ ~𝑁 𝜃 𝑘−1, Σ II. 𝛼 = min 1, 𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀 𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀 III. 𝑢~𝑈(0,1) IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗ 𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1 Metropolis Algorithm : proposed Gaussian distribution
  • 13. Index 12 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 14. Adaptive Metropolis algorithm 13 The AM algorithm : 1. Initialize 𝜃0, Σ0 2. For 𝑘 = 1,2,3, … I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1 II. 𝛼 = min 1, 𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀 𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀 III. 𝑢~𝑈(0,1) IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗ 𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1 V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using following equation Σk = cov 𝜃0, 𝜃1, … , 𝜃 𝑘 + 𝜀𝐼 𝜆 = 2.38/𝑑2 where 𝑑 is the dimension of Σ Introduced by recursion formula
  • 15. Other adaptive algorithm 14 • regeneration-based adaptive algorithm [Gilks et al 1998] • adaptive independent Metropolis-Hastings algorithm [Holden et al 2009] • Robust adaptive Metropolis(RAM) [Vihola 2012] • MCMC integrated with differential evolution [Vrugt et al 2009] etc…
  • 16. Index 15 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 17. Variational Bayesian Adaptive Metropolis Algorithm 16 The VB-AM algorithm : 1. Initialize 𝜃0, Σ0 2. For 𝑘 = 1,2,3, … I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1 II. 𝛼 = min 1, 𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀 𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀 III. 𝑢~𝑈(0,1) IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗ 𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1 V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using VB-AKF update step
  • 18. Kalman Filter (1) 17 State Space Model 𝒙 𝑘 = 𝐴 𝑘−1 𝒙 𝑘−1 + 𝜼 𝒚 𝑘 = 𝐻 𝑘 𝒙 𝑘 + 𝝐 ⇔ 𝒙 𝑘 ~ 𝑁(𝐴 𝑘−1 𝒙 𝑘−1, 𝑄 𝑘−1) 𝒚 𝑘 ~ 𝑁(𝑦 𝑘 𝒙 𝑘−1, Σ 𝑘)
  • 19. Kalman Filter (2) 18 true data 𝑥1:𝑇 observation 𝑦1:𝑇 Gaussian Noise 𝜀~𝑁(0, Σ) Estimate by Kalman Filter
  • 20. Kalman Filter(3) 19 known 𝜃 = (𝐴, 𝐻, 𝑄, Σ)objective : assume 𝑥 ⇔ {𝑚, 𝑃} Prediction Step 𝑚 𝑘 − = 𝐴 𝑘−1 𝑚 𝑘−1 𝑃𝑘 − = 𝐴 𝑘−1 𝑃𝑘−1 𝐴 𝑘−1 𝑇 + 𝑄 𝑘−1 (8) Update Step 𝑆 𝑘 = 𝐻 𝑘 𝑃𝑘 − 𝐻 𝑘 𝑇 + Σ 𝑘 𝐾𝑘 = 𝑃𝑘 − 𝐻 𝑘 𝑆 𝑘 −1 𝑚 𝑘 = 𝑚 𝑘 − + 𝐾𝑘 𝑦 𝑘 − 𝐻 𝑘 𝑚 𝑘 − 𝑃𝑘 = 𝑃𝑘 − − 𝐾𝑘 𝑆 𝑘 𝐾𝑘 𝑇 (9) Initialize 𝑚0, 𝑃0 algorithm Iterate For 𝑘 = 1,2, …
  • 21. Recursive Least Square(RLS) 20 If 𝐴 𝑘−1 = 𝐼 𝑎𝑛𝑑 𝑄 𝑘−1 = 0 the Kalman filter reduces to Recursive Least Square 𝑥 𝑦
  • 22. VB-AKF (Variational Bayes Adaptive Kalman Filter) 21 objective : assume 𝑥 ⇔ {𝑚, 𝑃} and tuning Σ known 𝜃 = (𝐴, 𝐻, 𝑄, Σ) Σ:unknown Initialize 𝑚0, 𝑃0, Σ0, 𝑣0 Prediction Step Update Step Iterate until Σ 𝑘 is convergence Iterate For 𝑘 = 1,2, … algorithm
  • 23. Variational Bayes 22 Computing 𝑝 𝑥 𝑘, Σ 𝑘 𝑦1:𝑘) is intractable. free-form Variational Bayesian approximation 𝑝 𝑥 𝑘, Σ 𝑘 𝑦1:𝑘) ≈ 𝑄 𝑥 𝑥 𝑘 𝑄Σ(Σ 𝑘) = 𝑵 𝒙 𝑘 𝒎 𝑘, 𝑷 𝑘)𝑰𝑾 Σ 𝑘 𝑣 𝑘, 𝑽 𝑘)
  • 24. heuristic dynamic for the covariances 23 Such kind of dynamical model is hard to construct explicitly Sarkka et al. proposed heuristic dynamic for the covariances 𝑣 𝑘 − = 𝜌 𝑣 𝑘−1 − 𝑑 − 1 + 𝑑 + 1 Σ 𝑘 − = 𝑩Σ 𝑘−1 − 𝑩 𝑇 (21)
  • 25. VB-AKF (Variational Bayes Adaptive Kalman Filter) 24 objective : assume 𝑥 ⇔ {𝑚, 𝑃} and tuning Σ known 𝜃 = (𝐴, 𝐻, 𝑄, Σ) Σ:unknown Initialize 𝑚0, 𝑃0, Σ0, 𝑣0 Prediction Step Update Step Iterate until Σ 𝑘 is convergence Iterate For 𝑘 = 1,2, … algorithm
  • 26. Index 25 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 27. Variational Bayesian Adaptive Metropolis Algorithm 26 The VB-AM algorithm : 1. Initialize 𝜃0, Σ0 2. For 𝑘 = 1,2,3, … I. 𝜃∗~𝑁 𝜃 𝑘−1, 𝜆Σk−1 II. 𝛼 = min 1, 𝑝 𝜃∗ 𝑧1, … , 𝑧 𝑀 𝑝 𝜃 𝑘−1 𝑧1, … , 𝑧 𝑀 III. 𝑢~𝑈(0,1) IV. 𝑖𝑓 𝑢 < 𝛼 ∶ set 𝜃 𝑘 = 𝜃∗ 𝑒𝑙𝑠𝑒 ∶ set 𝜃 𝑘 = 𝜃 𝑘−1 V. 𝑈𝑝𝑑𝑎𝑡𝑒 Σ using VB-AKF update step
  • 33. Index 32 1. Introduction – What’s Statistical Problem? 2. MCMC 3. Adaptive MCMC Methods 4. VB-AKF 5. VBAM 6. Numerical Experiments 7. Conclusion
  • 34. Conclusion 33  This Paper propose a new adaptive MCMC algorithm called Variational Bayesian adaptive Metropolis(VBAM).  The VBAM algorithm updates the proposal covariance matrix using the Variational Bayesian adaptive Kalman filter(VB-AKF).  In the simulated experiments, VBAM perform better than the AM algorithm of Harrio et al.  In the real data examples, VBAM produced results consisted with results reported literature.
  • 35. Discussion 34  The advantage of the proposed method is that it has more parameters to tune , which gives more freedom.  The computational requirements of VBAM method 𝑂 𝑑3 , while the usual AM is 𝑂(𝑑2).  But these operations are still quite cheap compared with MCMC sampling.
  • 36. Future works 35  replacing Kalman filter with non-linear Kalman filters (ex) extended Kalman filter , Unscented Kalman filter  particle filter (Rao-Blackwellized) could be used for estimate the noise covariance.  Compare proposal adaptation method using different kinds of filters.
  • 37. State Space Model(1) 36 State Space Model 𝑥2 𝑥 𝑇𝑥1 𝑦1 𝑦2 𝑦 𝑇 latent variable observed variable sys-eq obs-eq

Editor's Notes

  • #37: 段落の幅要修正 今回は提案分布のチューニングにVB-AKFを使ったが, カルマンフィルターを非線形なものに拡張したもの例えば拡張カルマンフィルタや, UKFについて観測ノイズがAdaptiveなフィルタを考えれば, 同様にAdaptive なMetropolis Algorithmが考えられる. 他の非線形Adaptiveなフィルターについては著者のSarkkaがreferenceの33番で提案している. さらにはRao-Blackwellかすれば粒子フィルタもAdaptiveな提案分布の構成に利用可能である. これらの手法を導入し比較することがfuture works.