University of Edinburgh , School of Engineering, Edinburgh
SCCS – Scottish Carbon Capture and Storage Centre
Rotary wheel adsorber for carbon capture
E. Mangano1, E. Shiko1, A. Greenaway3, A. Gibson2, A. Gromov2, M. M. Lozinska3, 
E. Campbell2, P. A. Wright3, S. Brandani1
1 University of Edinburgh, School of Engineering;
2 University of Edinburgh, School of Chemistry;
3 University of St. Andrews;
EPSRC:  EP/J02077X/1
e.mangano@ed.ac.uk
s.brandani@ed.ac.uk
“Best paper” of the Carbon Management: Recent Advances in Carbon Capture, Conversion, Utilization and Storage session 
at ACS Fall meeting 2015
Adsorption Materials and Processes for 
Gas fired power plants – AMPGas
2
Partners:           
The University of Edinburgh 
(Coordinator)
University of St. Andrews Heriot‐Watt University
Industrial Partner: 
Howden Group Ltd
Other industrial contributions:
Chemviron Carbon; Purolite; Thomas Swan and UOP 
UKCCSRC Autumn Biannual Meeting 2015
AMPGas Project 
3
Aims:           
• Apply a range of experimental techniques to determine equilibrium and 
kinetic properties of nanoporous materials, which are being developed for 
CO2 capture from dilute streams;
• Predict the performance of an integrated adsorption process based on rapid 
thermal swing;
• Demonstrate the proposed process using a bench scale rotary wheel 
adsorber.
Materials:
Thanks to the expertise of the partners different materials can be tested:
Zeolites (St. Andrews University)
Amine‐containing MOFs (St. Andrews University)
Amine‐based Silicas (Heriot‐Watt University & St. Andrews University)
Amine‐containing Carbon and Carbon Nanotubes (University of Edinburgh)
UKCCSRC Autumn Biannual Meeting 2015
Adsorbents: the challenges
4
Tailoring novel adsorbents for CO2 separation from dilute streams (4‐9% CO2):            
Physisorption
(optimised zeolites)  
Chemisorption
(amine‐based adsorbents )   
• Structures
• Cation types 
• Cation distribution
• Hydrophilicity
• Supporting material 
• Pore size/volume
• Amine groups
• Synthesis process
• Chemical and thermal stability 
• Behaviour in presence of water 
UKCCSRC Autumn Biannual Meeting 2015
Porous Materials
5
Cation Gating Zeolites Small Pore MOFs
• Metal organic frameworks consist of 
organic linker groups coordinated to metal 
clusters (nodes)
• Ability to modify both metal source and 
organic linker makes MOFs highly versatile
• Functionalisation of organic linkers can 
have a profound effect on the adsorption 
properties of the material.
• Aluminosilicates which contain 8 
membered windows, such as RHO, ECR‐18
• Extra framework cations adopt positions in 
window sites
• Co‐operative interaction between CO2 and 
cation causes cation to move allowing CO2
to pass through window
• Highly selective for CO2/ N2 and CO2/ CH4
UKCCSRC Autumn Biannual Meeting 2015
Cation Gating Zeolites
6
• Recently discovered which can be used to separate  adsorbates with 
differing physical properties, for example  the separation of CO2 from N2.
• This is a separate mechanism from the more common molecular sieving 
separations that zeolites are commonly used for. 
• Has potential to be used for size inverse separations. As molecules with a 
larger polarizability, dipole and quadrupole moments interact more 
strongly with the cation. 
• M. M. Lozinska, E. Mangano, et al.  J. Am. Chem. Soc. 2012, 134, 17628‐
17642
UKCCSRC Autumn Biannual Meeting 2015
Cation Gating Zeolites: Na‐RHO
7
Simple zeolite structure, with lta cages connected via d8r cages.
Exhibits promising gas adsorption / separation properties – but slow
• M. M. Lozinska, E. Mangano, et al.  J. Am. Chem. Soc. 2012, 134, 17628‐
17642
• M. M. Lozinska, P. A. Wright, et al. Chem. Mater., 2014, 26, 2052‐2061.
Na
UKCCSRC Autumn Biannual Meeting 2015
Cation Gating Zeolites: Expanding the Rho series
8
• ECR‐18 is the synthetic form of zeolite
Paulingite
• All openings 8‐rings
• 7 different cage types.
• Similar interpenetrated backbone to Rho
UKCCSRC Autumn Biannual Meeting 2015
Cation Gating Zeolites: ECR‐18
9
Na,H‐ECR‐18
0 50 100 150 200
0
5
10
Relativeintensity(a.u.)
Time (s)
0.3082 g 
CO2/N2 (50:50)
20 cc/min
303 K
Structural changes of synthetic paulingite (Na,H‐ECR‐18) upon dehydration and CO2 adsorption A. G. 
Greenaway, J. Shin, P. A. Cox, E. Shiko, S. P. Thompson, S. Brandani, S. Bong Hong, P. A. Wright*, Zeit. 
Krist. – Crystalline Materials, 2015, 230, 223‐231
UKCCSRC Autumn Biannual Meeting 2015
ZSM‐25
10
• Solved structure of ZSM‐25 : related to ECR‐18 and Rho
ECR‐18 ZSM‐25
A zeolite family with expanding structural complexity and embedded isoreticular
structures P. Guo, J. Shin, A. G. Greenaway, J. Gi Min, J. Su, H. J. Choi, L. Liu, P. A. 
Cox, S. B. Hong, P. A. Wright, X. Zou Nature, 2015, 524, 74‐78
UKCCSRC Autumn Biannual Meeting 2015
ZSM‐25
11
• NaTEA‐ZSM‐25, NaTEA‐ECR‐18, Na‐Rho 
and K‐chabazite
• Presence of secondary cage structure 
speeds up adsorption in Na form of the 
zeolites ECR‐18 and ZSM‐25
• Adsorption isotherms at 298 K of CO2, 
CH4 and N2
• Good regenerability. Inset shows 
capacities over 100 cycles
Kinetics of CO2 uptake
Adsorption Isotherms on ZSM‐25
UKCCSRC Autumn Biannual Meeting 2015
Small Pore MOFs
12
CO2 at 273 K
N2 at 77 K
• Model Sc2BDC3 series is hydrophobic
• Isostructural series with functional 
groups
• Resulting MOFs exhibit different 
adsorption properties
• Amine –functionalised most selective
UKCCSRC Autumn Biannual Meeting 2015
CO2 adsorption on Sc2(NH2‐BDC)3
13
Thermodynamics 
from isotherms
Kinetics (Zero Length Column)
Heat of adsorption 31(±3) kJ mol‐1
In situ synchrotron IR microspectroscopy of CO2 adsorption on the functionalised MOF Sc2(BDC‐NH2)3
A. Greenaway, B. Gonzalez‐Santiago, P. M. Donaldson, M. D. Frogley, G. Cinque, J. Sotelo, S. Moggach, 
E. Shiko, S. Brandani, R. F. Howe and P. A. Wright Angew. Chem. Int. Ed. 2014, 53, 13483‐13487
0.01
0.1
1
0 0.1 0.2 0.3 0.4
t(min)
C/C0
11 ml/min
21 ml/min
32 ml/min
blank 11 ml/min
blank 21 ml/min
blank 32 ml/min
0.01
0.1
1
0 1 2 3 4 5 6
Ft(ml)
C/C0
11 ml/min
21 ml/min
32 ml/min
blank 11 ml/min
blank 21 ml/min
blank 32 ml/min
Desorption curves of CO2 from Sc2(BDC‐NH2)3 and an 
empty ZLC column at different flowrates. The 
normalized decrease in concentration (C/C0) is 
plotted against a) time (t) and b) Ft scales.
Desorption is under equilibrium conditions even at 
fastest flow rate
UKCCSRC Autumn Biannual Meeting 2015
14
Amine functionalised carbons: preparation
3 Main types of material prepared:
1.  CNTs grafted with a basic amino functionalities
2.  Activated carbon grafted with amino functionalities
3.  A physical impregnation of amino groups to the surface of two 
different types of porous carbon
Amine Grafted carbon nanotubes 
(CNT‐CO‐NHR)
Amine grafted porous 
carbon
Amine impregnated porous 
carbon (various loadings)
EDA √ √ √
DETA √ ‐ √
TETA √ √ √
PEI (MW600) √ √ √
PEI (MW10000) √ √ √
PEI (MW750000) √ ‐ ‐
Advantage: 
• Carbon materials can be heated ohmically for cyclic regeneration of the 
adsorbent
UKCCSRC Autumn Biannual Meeting 2015
Multi‐walled carbon nanotubes (MWCNT)
15
• Carbon nanotubes are cylindrical allotropes of 
carbon 
• Two varieties: single walled and multi‐walled 
• Large specific surface area ranging from 200 –
1000 m2 g‐1
• Surface can be readily functionalised to modify 
the material’s properties 
• Functionalization methods can be applied to 
cheaper activated carbon for large scale gas 
separation 
• Thermal cyclic regeneration through ohmic
heating
• The highly ordered structure makes particularly 
interesting the study of the kinetics  
UKCCSRC Autumn Biannual Meeting 2015
Functionalization of Carbon Materials
16
Scheme: Functionalization of carbon 
nanotubes with basic amine moieties 
Image: MWCNT/agarose aerogel produced 
by lyophilisation
Scheme LHS: Carbon nanotubes can be functionalized for selective carbon 
capture 
Image RHS: Functionalized CNTs can be utilised to create 3D structures with high 
specific surface area
UKCCSRC Autumn Biannual Meeting 2015
Physical impregnation of amine onto porous carbons 
17
Pore Volume/ cc g‐1
micro‐AC meso‐AC
Raw 0.74 1.09
TETA‐10 0.52 0.77
TETA‐30 0.11 0.47
TETA‐50 0.02 0.31
TETA‐70 0.01 0.19
0.0 0.2 0.4 0.6 0.8 1.0
0
100
200
300
400
500Volume@STP(cc/g)
Relative Pressure (P/P0
)
BET (m2
g-1
)
micro-AC 1336
micro-AC-TETA(10) 953
micro-AC-TETA(30) 219
micro-AC-TETA(50) 24
micro-AC-TETA(70) 6.7
0.0 0.2 0.4 0.6 0.8 1.0
0
100
200
300
400
500
600
700
800
Volume@STP(cc/g)
Relative Pressure (P/P0
)
BET (m2
g-1
)
meso-AC 816
meso-AC-TETA(10) 510
meso-AC-TETA(30) 274
meso-AC-TETA(50) 162
meso-AC-TETA(70) 92.5
N2 isotherms, 77K 
2 4 6 8 10 12 14
0.00
0.01
PoreVolume(cc/g)
Pore width (nm)
meso-AC
meso-AC-TETA(10)
meso-AC-TETA(30)
meso-AC-TETA(50)
meso-AC-TETA(70)
DFT: Pore size distribution
UKCCSRC Autumn Biannual Meeting 2015
CO2 Uptake Temperature Dependence
18
0 1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
q/mmolg-1
Time/ s
35 °C
50 °C
75 °C
0 5 10
0.0
0.2
0.4
0.6
0.8
1.0
q(mmolg-1
)
Time (Hours)
35°C
50°C
75°C
90°C
• Raw AC material 
• CO2 capacity ↓ as temperature ↑
• Impregnated AC material 
• CO2 capacity ↑ as temperature ↑ 
micro‐AC
Pore width ≤ 2 nm
micro‐AC‐TETA‐50
Pore width ≤ 2 nm
Heat of Adsorption > 50 kJ mol‐1 – chemisorption
Heat of Adsorption < 50 kJ mol‐1 – physisorption
ΔHADS = 27 kJ mol‐1
Physisorption
ΔHADS = 90 kJ mol‐1
Chemisorption
Thermogravimetric analysis (TGA):
UKCCSRC Autumn Biannual Meeting 2015
CO2 uptake of carbon supports loaded with various 
wt % of TETA
19
micro-AC-TETA(10)
micro-AC-TETA(30)
micro-AC-TETA(50)
micro-AC-TETA(70)
0 2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0
q(mmolg
-1
)
Time (hours)
(a) (b)
meso-AC-TETA(10)
meso-AC-TETA(30)
meso-AC-TETA(50)-run1
meso-AC-TETA(50)-run2
meso-AC-TETA(75)
0 5 10
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
q(mmolg-1
)
Time (hours)
micro‐AC‐TETA
Pore width ≤ 2 nm
meso‐AC‐TETA
Pore width 2‐10 nm
J.A.A. Gibson, A.V. Gromov, S. Brandani, E.E.B. Campbell, 
Microporous and Mesoporous Materials, 208 (2015) 129‐139.
UKCCSRC Autumn Biannual Meeting 2015
CO2 Cyclic Experiments
20
0 2 4 6 8 10 12 14 16
0.0
0.2
0.4
0.6
0.8
1.0
1.2
q(mmolg
-1
)
time (hours)
q
Heat
-2
0
2
4
6
8
10
Heatflow(mW)
0 2 4 6 8 10 12 14 16
0.0
0.2
0.4
0.6
0.8
1.0
q(mmolg
-1
)
time (hours)
q
Heat flow
9% drop in capacity over 4 cycles
-2
0
2
4
6
8
10
Heat(mW)
meso‐AC‐PEI600, 4 cycles 0.1 bar CO2, 75 °C
meso‐AC‐TETA‐30, 4 cycles 0.1 bar CO2, 75 °C
N
H 14
PEI
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
21
Zero Length 
Column
Extended Zero 
Length Column
Dual Piston PSA Rotary Wheel 
Adsorber  
 Equilibrium
 Kinetics 
 Stability
 Clear separation
 Useful for TSA 
evaluation
 Heat transfer
 Mass transfer 
 Pressure drop 
 Full cycle 
performance 
 Purity
 Recovery
 Productivity  
10‐15 mg ~ 50 mg ~ 10 g ~ 1 Kg
UKCCSRC Autumn Biannual Meeting 2015
22
Real rotary system  
UKCCSRC Autumn Biannual Meeting 2015
Testing Novel Adsorbents: the Zero Length Column
23
An experimental technique should allow us to:
• Rank CO2 capacity of materials rapidly
• Require only small samples
• Interpret the results easily
• Allow to determine kinetics
• Allow to test the materials with water
• Allow to test the materials with SOx and NOx
A properly designed ZLC system can deliver
on all of these requirements. -100
0
100
200
300
400
500
600
0 200 400 600 800 1000 1200
Time, s
Signal

Full sat.  Partial sat.
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
24
Ranking 
Good 
sample 
Bad 
sample 
Equilibrium 
Kinetics 
Stability 
UKCCSRC Autumn Biannual Meeting 2015
Ranking of CO2 capacity for Amine based Carbons (UoE)
25
0 0.5 1 1.5 2 2.5
micro‐AC
meso‐AC
micro‐AC‐TETA(10)
micro‐AC‐TETA(30)
micro‐AC‐TETA(50)
micro‐AC‐TETA(65)
meso‐AC‐TETA(10)
meso‐AC‐TETA(30)
meso‐AC‐TETA(50)
meso‐AC‐TETA(75)
meso‐AC‐PEI600(20)
meso‐AC‐PEI600(40)
meso‐AC‐PEI600(60)
meso‐AC‐PEI600(75)
meso‐AC‐PEI600(100)
meso‐AC‐2‐PEI600(290)
q (mmol g‐1)
Conditions: 75 °C , 10% CO2, 90% helium
UKCCSRC Autumn Biannual Meeting 2015
Ranking of CO2 capacity for Zeolites (UoStA)
T = 35 °C; PCO2
= 0.1 atm
UKCCSRC Autumn Biannual Meeting 2015
Equilibrium controlled experiment 
27
0.01
0.1
1
0 0.1 0.2 0.3 0.4
t(min)
C/C0
11 ml/min
21 ml/min
32 ml/min
blank 11 ml/min
blank 21 ml/min
blank 32 ml/min
0.01
0.1
1
0 1 2 3 4 5 6
Ft(ml)
C/C0
11 ml/min
21 ml/min
32 ml/min
blank 11 ml/min
blank 21 ml/min
blank 32 ml/min
UKCCSRC Autumn Biannual Meeting 2015
ZLC Partial loading experiment on Na‐Rho (1μm)
28
R2/D = 167 min
T = 35 °C; PCO2
= 0.1 atm
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
29
Ranking 
Good 
sample 
Bad 
sample 
Equilibrium 
Kinetics 
Stability 
UKCCSRC Autumn Biannual Meeting 2015
30
ZLC scale‐up: Extended ZLC for breakthrough experiments
Sample: meso‐AC‐PEI1200(200)
Conditions: 75 °C, 10% CO290%N2
Model under development to fit E‐ZLC data
Capacity: 1.8 mmol g‐1
Allows to run breakthrough 
experiments with ~ 50 mg 
of sampleEvidence of 
chemical reaction
UKCCSRC Autumn Biannual Meeting 2015
31
Breakthrough experiment on Li ‐ Rho
Ptot = 1 atm
T = 35 °C
YCO2
= 0 .05
YCH4
= 0.4 
Carrier gas: He
CO2/CH4 selectivity
UKCCSRC Autumn Biannual Meeting 2015
Breakthrough experiments on Paulingite
32
Ptot = 1 atm
YCO2
= YN2
= 0.3 in He
Evidence of structural change 
Adsorption
CO2/N2 selectivity
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
33
Ranking 
Good 
sample 
Bad 
sample 
Equilibrium 
Kinetics 
Stability 
Good 
sample 
UKCCSRC Autumn Biannual Meeting 2015
Process scale‐up: Dual Piston PSA 
34
Benefits of DP‐PSA 
• Direct test of the separation  
performance
• Single column required
• Closed system with total reflux; 
only small amount of gas needed
• Rapid testing of adsorbent 
materials
• Many different experiments are 
possible
• Particularly suitable to measure 
kinetic and equilibrium properties  
of novel adsorbent materials
Aim
Testing of novel materials for the 
separation of CO2 from flue gas
Dosing system
Column
PistonsOven
Pressure readings
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
35
Ranking 
Good 
sample 
Bad 
sample 
Equilibrium 
Kinetics 
Stability 
Good 
sample 
All information for 
the model acquired!
UKCCSRC Autumn Biannual Meeting 2015
Complete
model
Non-
Isothermal: 1T
Non-
Isothermal: 2T
Non-
Isothermal: 3T
Isothermal
No Pressure
drop
Pressure
drop
No Film
resistance
Film
resistance
No
Macropore
Macropore
LDF
Macropore
Diffusion
Micropore
LDF
Micropore
Diffusion
Micropore
Equilibrium
Dusty Gas
Model
MS-Surface
diffusion
Complete
model
Non-
Isothermal: 1T
Non-
Isothermal: 2T
Non-
Isothermal: 3T
Isothermal
No Pressure
drop
Pressure
drop
No Film
resistance
Film
resistance
No
Macropore
Macropore
LDF
Macropore
Diffusion
Micropore
LDF
Micropore
Diffusion
Micropore
Equilibrium
Dusty Gas
Model
MS-Surface
diffusion
Adsorption model hierarchy
36
Now including also Ideal Adsorption Solution
Theory methods for multicomponent adsorption
UKCCSRC Autumn Biannual Meeting 2015
General adsorption cycle simulator
37
Feed
Pressurisation
Adsorption
Evacuation
PE
Purge
PE
Column 2
Column 1
Adsorption systems
• Multiple adsorption columns
• Connected by splitters, mixers, 
valves and tanks
• Series of cycle steps: 
pressurisation, feed, purge, …
Extend column simulation to general adsorption cycles
• Modular system with different units: adsorption 
columns, valves, splitters, tanks, ...
• Arbitrary number and connection of the units
• Simulate different cycle configurations by time events, 
e.g. switching of valves
UKCCSRC Autumn Biannual Meeting 2015
Buffer unit for unibed approach
38
•All columns cycle through the same steps
•Steps with interaction between two columns
• Output of one column is input of the other 
column
• Add a buffer unit for each interaction pair
•Data in buffer unit is half a cycle out of date
•Same result at Cyclic Steady State
•Order of magnitude faster
UKCCSRC Autumn Biannual Meeting 2015
Experimental approach for novel adsorbents  
39
Ranking 
Good 
sample 
Bad 
sample 
Equilibrium 
Kinetics 
Stability 
Good 
sample 
All information for 
the model acquired!
UKCCSRC Autumn Biannual Meeting 2015
Rotary Wheel Adsorber for carbon capture – Advantages 
40
• Can treat large volumes of gas 
• Lower capital cost (no multiple columns, piping , valves, etc…) 
• Efficient heat integration
• Low pressure drop
• Can perform rapid temperature swings 
• Thermal cycles of few minutes: 10 times faster than traditional TSA 
in fixed bed
• Significant reduction of the size of the capture plant 
Due to very low concentration of CO2 thermal swing adsorption is required for 
rapid regeneration of the adsorbent.
A properly designed rotary wheel adsorber:
UKCCSRC Autumn Biannual Meeting 2015
Bench scale Rotary Wheel Adsorber for carbon capture 
41
• 12‐columns rotary system
• Each column is detachable and can be 
independently tested
• Up to 24 thermocouples (2 per column)
• Large amount of data to be sent in real 
time 
• Max. rotational speed 1 rpm
• Regeneration using electrical heating 
elements
• One of the first LiFi communication on 
moving elements 
• Real time computer for data acquisition 
and control of the system 
Rotating partStationary  partStationary  part
UKCCSRC Autumn Biannual Meeting 2015
42
Bench scale Rotary Wheel Adsorber for carbon capture 
UKCCSRC Autumn Biannual Meeting 2015
Experimental setup being built at UoE
43
Rotating can and 
adsorption columns  Sector plate
PTFE sector plate 
sealing
UKCCSRC Autumn Biannual Meeting 2015
RWA concept ‐ system control
44
Slip rings for H‐E
60 W AC motor 0 ‐ 1 rpm
NI – CRIO real time computer 
MFC
Gas
D‐P transducers  
LED ring
TC data + position
LiFi receiver
UKCCSRC Autumn Biannual Meeting 2015
45
Preliminary simulations  
Column: L = 20 cm, ID = 2 cm. 
Adsorbents: 
• TRI‐PE‐MCM‐41(Y. Belmabkhout, et al., 2010)
• 13X (isotherms measured in our lab)
Ptot = 1 bar
Feed concentration: 5% CO2 in N2
Adsorption:35 °C
Regeneration methods: Electrical heating; Steam
0.05 bar
Adapting Cysim cycle simulator for the simulation of some base scenarios:
UKCCSRC Autumn Biannual Meeting 2015
46
Case 1 : Electrical heating 
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
47
Case 1 : temperature distribution 
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
48
Case 1 : concentration distribution 
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
49
Case 2 : Purge with steam
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
50
Case 2 : temperature distribution 
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
51
Case 2 : concentration distribution 
TRI‐PE‐MCM‐41 13X
UKCCSRC Autumn Biannual Meeting 2015
LiFi – how does it work?
52
Time
Intensity
1 1 1 10 0 00 0
On
Off
Spectrum:
• Unregulated (free)
• Huge 
• Safe
Existing Infrastructure
Inexpensive devices
Prof. Harald Haas, Dr. Stefan Videv UKCCSRC Autumn Biannual Meeting 2015
Recent ‘hero’ demonstrations
53
3.5 Gbps from single color LED at 5 mW
1.1 Gbps at 10 m at 5 mW
5 mW
Prof. Harald Haas, Dr. Stefan Videv UKCCSRC Autumn Biannual Meeting 2015
Conclusions 
• Several materials have been developed and tested using different 
techniques (ZLC, TGA, Breakthrough)
• Some of the amine‐functionalised carbons show a clear chemisorption 
process 
• Some of the zeolitic frameworks show evidence of structural modification 
associated to the presence of CO2
• A novel bench scale rotary wheel adsorber has bee designed and is being 
built at the UoE
• CySim is being modified to predict the performance of the bench scale 
prototype
• A novel LiFi communication system (one of the first on moving elements) 
is being developed for the data acquisition in the RWA 
54UKCCSRC Autumn Biannual Meeting 2015
Acknowledgments 
55
We gratefully acknowledge EPSRC for funding the AMPGas project 
(EP/J02077X/1)
UKCCSRC Autumn Biannual Meeting 2015

More Related Content

PDF
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
PDF
CO2 capture from NGCC Flue Gas and Ambient Air Using PEI-Silica Adsorbent - D...
PDF
Wood Workshop on Modelling and Simulation of Coal-fired Power Generation and ...
PDF
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
PDF
Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...
PDF
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
PPT
CO2 Separation - A Proposal
PDF
Peter Styring (University of Sheffield) presenting 'Carbon Dioxide Utilisatio...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
CO2 capture from NGCC Flue Gas and Ambient Air Using PEI-Silica Adsorbent - D...
Wood Workshop on Modelling and Simulation of Coal-fired Power Generation and ...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
CO2 Separation - A Proposal
Peter Styring (University of Sheffield) presenting 'Carbon Dioxide Utilisatio...

What's hot (12)

PDF
2014 krishnamurthy ai_ch_ej_pilotplant
PDF
Defining targets for_adsorbent_material_performanc
PDF
Meihong Wang (University of Hull) - Process Intensification for Post-Combust...
PDF
Gas CCS in China - Jia Li at the UKCCSRC Gas CCS Meeting, University of Susse...
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
Carbon Dioxide Properties and the Role of Impurities in the Subsurface - pres...
PPT
A study on fixed bed gasification of treated solid refuse fuel residue
PDF
Jonathan Lee (Newcastle University) - Intensification of Solvent Based Carbon...
PDF
BIO-CAP-UK: Air/Oxy Biomass Combustion with CO2 Capture Technology, UK Study ...
PPTX
CO2 absorption in power plants_f3
PPT
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
PDF
Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...
2014 krishnamurthy ai_ch_ej_pilotplant
Defining targets for_adsorbent_material_performanc
Meihong Wang (University of Hull) - Process Intensification for Post-Combust...
Gas CCS in China - Jia Li at the UKCCSRC Gas CCS Meeting, University of Susse...
International Journal of Computational Engineering Research(IJCER)
Carbon Dioxide Properties and the Role of Impurities in the Subsurface - pres...
A study on fixed bed gasification of treated solid refuse fuel residue
Jonathan Lee (Newcastle University) - Intensification of Solvent Based Carbon...
BIO-CAP-UK: Air/Oxy Biomass Combustion with CO2 Capture Technology, UK Study ...
CO2 absorption in power plants_f3
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...
Ad

Viewers also liked (20)

PDF
Structural aspect on carbon dioxide capture in nanotubes
PPT
Dr. vora ppt chapter 5 diesel aftertreatment
PPT
Chemical reaction engineering introduction by Er sohel R sheikh
PPTX
Adsorption
DOC
Bet isotherm
PPTX
PPTX
Dye removal by adsorption on waste biomass - sugarcane bagasse
PPTX
Leaching process (solid-liquid extraction)
PPT
13 adsorption
PDF
elements-of-chemical-reaction-engineering-4th-ed-fogler-solution-manual
PPTX
PLANT VIRUS PPT - SLIDE SHARE
PPTX
PPT
Adsorption
PPT
Liquid liquid extraction and flocculation
PPTX
Leaching
PDF
Chemical reaction engineering handbook of solved problems
PPTX
REMOVAL OF ANTIBIOTIC FROM WASTEWATER BY ADSORPTION
PDF
Adsorption presentation
Structural aspect on carbon dioxide capture in nanotubes
Dr. vora ppt chapter 5 diesel aftertreatment
Chemical reaction engineering introduction by Er sohel R sheikh
Adsorption
Bet isotherm
Dye removal by adsorption on waste biomass - sugarcane bagasse
Leaching process (solid-liquid extraction)
13 adsorption
elements-of-chemical-reaction-engineering-4th-ed-fogler-solution-manual
PLANT VIRUS PPT - SLIDE SHARE
Adsorption
Liquid liquid extraction and flocculation
Leaching
Chemical reaction engineering handbook of solved problems
REMOVAL OF ANTIBIOTIC FROM WASTEWATER BY ADSORPTION
Adsorption presentation
Ad

Similar to Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants - AMPGas, Enzo Mangano, University of Edinburgh - UKCCSRC Strathclyde Biannual 8-9 September 2015 (20)

PDF
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
PDF
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
PDF
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
PPTX
Final defense fyp slides
PPTX
Evaluation_of_porous_adsorbents_for_CO2_capture_under_humid_conditions.pptx
PPTX
Advanced nano carbon based sorbent for co2 capture
PDF
Insitu CO2 capture from various flue gas
PDF
(Green chemistry and sustainable technology) an hui lu, sheng dai (eds.)-poro...
PDF
Adsorbation
PDF
Vasiliev2007
PDF
PACT Carbon Capture Plant - talk by Kris Milkowski, PACT/University of Leeds,...
PDF
Absorber Models for absorption of Carbon dioxide from sour natural gas byMeth...
PDF
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
PPTX
Separation of CO2 and Moisture from biogas by Adsorption method
PDF
Adsorption and Transport at the Nanoscale 1st Edition Nick Quirke
PPTX
cryogenics.pptx
PPTX
Adsorption
PDF
gSAFT: advanced physical properties for carbon capture and storage system mod...
PPTX
Carbon materials and environment electrocatalysis & polymer electrochemistry...
PPT
metal organic framework-carbon capture and sequestration
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
Final defense fyp slides
Evaluation_of_porous_adsorbents_for_CO2_capture_under_humid_conditions.pptx
Advanced nano carbon based sorbent for co2 capture
Insitu CO2 capture from various flue gas
(Green chemistry and sustainable technology) an hui lu, sheng dai (eds.)-poro...
Adsorbation
Vasiliev2007
PACT Carbon Capture Plant - talk by Kris Milkowski, PACT/University of Leeds,...
Absorber Models for absorption of Carbon dioxide from sour natural gas byMeth...
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
Separation of CO2 and Moisture from biogas by Adsorption method
Adsorption and Transport at the Nanoscale 1st Edition Nick Quirke
cryogenics.pptx
Adsorption
gSAFT: advanced physical properties for carbon capture and storage system mod...
Carbon materials and environment electrocatalysis & polymer electrochemistry...
metal organic framework-carbon capture and sequestration

More from UK Carbon Capture and Storage Research Centre (20)

PDF
CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...
PDF
Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...
PDF
Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...
PDF
Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...
PDF
20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...
PDF
Modelling Fault Reactivation, Induced Seismicity, and Leakage During Undergro...
PDF
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
PDF
Passive seismic monitoring for CO2 storage sites - Anna Stork, University of ...
PDF
Multiphase flow modelling of calcite dissolution patterns from core scale to ...
PDF
Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...
PDF
Challenges in the chemical industry, jay brookes (boc) industry ccs worksho...
PDF
Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...
PDF
Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...
PDF
Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...
PDF
Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...
PDF
Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...
PDF
Research Coordination Network on Carbon Capture, Utilization and Storage Fund...
PDF
Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...
PDF
Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...
PDF
A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...
CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...
Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...
Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...
Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...
20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...
Modelling Fault Reactivation, Induced Seismicity, and Leakage During Undergro...
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
Passive seismic monitoring for CO2 storage sites - Anna Stork, University of ...
Multiphase flow modelling of calcite dissolution patterns from core scale to ...
Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...
Challenges in the chemical industry, jay brookes (boc) industry ccs worksho...
Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...
Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...
Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...
Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...
Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...
Research Coordination Network on Carbon Capture, Utilization and Storage Fund...
Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...
Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...
A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...

Recently uploaded (20)

PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
PDF
Beginners-Guide-to-Artificial-Intelligence.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
Chapter-8 Introduction to Quality Standards.pptx
PPTX
Micro1New.ppt.pptx the main themes if micro
PPTX
chapter 1.pptx dotnet technology introduction
PPTX
CS6006 - CLOUD COMPUTING - Module - 1.pptx
PPTX
Software-Development-Life-Cycle-SDLC.pptx
PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PPTX
Agentic Artificial Intelligence (Agentic AI).pptx
PDF
Lesson 3 .pdf
PPT
UNIT-I Machine Learning Essentials for 2nd years
PPTX
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
PDF
Micro 4 New.ppt.pdf a servay of cells and microorganism
PPTX
Design ,Art Across Digital Realities and eXtended Reality
PPTX
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
PDF
electrical machines course file-anna university
DOCX
An investigation of the use of recycled crumb rubber as a partial replacement...
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
Cryptography and Network Security-Module-I.pdf
MAD Unit - 3 User Interface and Data Management (Diploma IT)
Beginners-Guide-to-Artificial-Intelligence.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Chapter-8 Introduction to Quality Standards.pptx
Micro1New.ppt.pptx the main themes if micro
chapter 1.pptx dotnet technology introduction
CS6006 - CLOUD COMPUTING - Module - 1.pptx
Software-Development-Life-Cycle-SDLC.pptx
Project_Mgmt_Institute_-Marc Marc Marc .pdf
Agentic Artificial Intelligence (Agentic AI).pptx
Lesson 3 .pdf
UNIT-I Machine Learning Essentials for 2nd years
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
Micro 4 New.ppt.pdf a servay of cells and microorganism
Design ,Art Across Digital Realities and eXtended Reality
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
electrical machines course file-anna university
An investigation of the use of recycled crumb rubber as a partial replacement...
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Cryptography and Network Security-Module-I.pdf

Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants - AMPGas, Enzo Mangano, University of Edinburgh - UKCCSRC Strathclyde Biannual 8-9 September 2015