SlideShare a Scribd company logo
AGILE DATA MINING 
WITH DATA VAULT 2.0 
Timo Cirkel, Michael Olschimke 
Dörffler & Partner GmbH
Introduction 
Background 
Example 
Conclusion 
AGENDA 
Agile 12.02.2014 Data Mining with Data Vault 2.0 2
INTRODUCTION 
Agile Data Mining with DataVault 2.0 
Agile 12.02.2014 Data Mining with Data Vault 2.0 3
TIMO CIRKEL 
BI-Consultant 
Certified Data Vault 2.0 Practitioner 
Analysis Of Policyholders 
Specialized inCRM, Software Development, 
DWHAutomation 
Industries: Insurance, Energy 
B. Sc. Business Informatics 
12.02.2014 Agile Data Mining with Data Vault 2.0 4
MICHAEL OLSCHIMKE 
Senior BI-Consultant 
Certified Data Vault 2.0 Practitioner 
Official Data Vault 2.0 Trainer in Europe 
AssociateTeacher University of Hannover 
Specializing in Data Vault 2.0, Data Mining, 
CRM, project management 
Industries: Insurance, Automotive, Retail, 
Public Sector, Non-Profits 
12.02.2014 Agile Data Mining with Data Vault 2.0 5
• Medium-sized consulting firm 
• Official Partner of Dan Linstedt In 
Europe 
• Consulting, Training, 
Implementation 
• Industries: 
• Insurance 
• Automotive 
• Banks 
• Trade 
• Pharmaceuticals 
• Telecommunications 
DÖRFFLER & PARTNER GMBH 
12.02.2014 Agile Data Mining With Data Vault 2.0 6
BACKGROUND 
Agile Data Mining with DataVault 2.0 
Agile 12.02.2014 Data Mining with Data Vault 2.0 7
DATA MINING PROJECT IN THE VGH 
Motor insurance 
Customer segmentation 
A first datamining pilot, therefore: 
No specific requirements 
Vision is developed during project 
Agile Project Methodology 
Close co-operation with business 
12.02.2014 Agile Data Mining with Data Vault 2.0 8
• Extracting 
information from 
existing data and 
Patterns 
• Four (large) 
categories: 
• Segmentation 
• Classification 
• Prediction 
• Association 
• Wide range of 
available algorithms 
and methods 
DATA MINING PROJECTS 
"The term Data Mining ... describes 
the extraction implicitly existing, 
non-trivial and useful knowledge 
from large, dynamic, relatively 
complex structured data." 
Datenbank 
Anwendung 
Anwender 
Data-Mining- 
Techniken 
Aussagen, Regeln & 
Informationen 
Data Dictionary 
Fachwissen 
12.02.2014 Agile Data Mining with Data Vault 2.0 9
DATA VAULT 2.0 MODELING 
Surrogate 
Key 
Business 
Keys 
Foreign Keys 
Descriptors 
In accordance with its own representation Linstedt, 2014 
12.02.2014 Agile Data Mining with Data Vault 2.0 10
DATA VAULT 2.0 METHODOLOGY 
Data Vault 
2.0 
Methodology 
Six 
Sigma 
TQM 
Scrum CMMI 
PMP 
SDLC 
12.02.2014 Agile Data Mining with Data Vault 2.0 11
DATA VAULT 2.0 METHODOLOGY FOR DATA MINING 
Advantages 
• Agile project management for DWH projects 
• Automation and generation 
• Rapid adoption to changes in the model 
• Incremental build-out = incremental cost control 
• Targeted delivery = two week sprints 
• Predictable and measurable results 
Disadvantages 
• Focus on loading of raw data and the production 
of information 
• Not many data mining references 
• Many concepts in the methodology are not 
applicable for data mining projects 
• Difficult scaling of team sizes in data mining 
projects 
12.02.2014 Agile Data Mining with Data Vault 2.0 12
CRISP-DM 
Own Representation in accordance with Chapman, et al. , 2000 
12.02.2014 Agile Data Mining with Data Vault 2.0 13
PROCESS MODEL 
Prozessmodell – VGH Kundensegmentierung 
ivv KTC D & P 
Daten in Data Vault 
Modell speichern 
Daten abziehen 
Algorithmus 
auswählen 
Segmentierung 
ausführen 
Ergebnis erzielt? 
Ja 
Ergebnis 
präsentieren 
Ergebnis ok? 
Ende 
Ja 
Start 
Gütefunktion 
erarbeiten 
SQL-Query erstellen 
Relevante VN-Attribute 
ermitteln 
Nein Formel ok? 
Ja 
Nein 
Algorithmen 
erforschen 
Nein 
Geeigneter 
Algorithmus 
gefunden? 
Ja 
Nein 
12.02.2014 Agile Data Mining with Data Vault 2.0 14
RAPIDMINER 
 Java-based 
data 
mining 
software 
 One of 
the most 
widely used 
data mining 
tools 
 Offers 
 Environment fo 
r control flow 
 Large number 
of algorithms 
 Large choice 
of data sources 
Overall CorporaTE Consultants Academics NGO / GOV'T 
© 2012 Rexer AnalYTICS 
12.02.2014 Agile Data Mining with Data Vault 2.0 15
EXAMPLE 
Agile Data Mining with DataVault 2.0 
Agile 12.02.2014 Data Mining with Data Vault 2.0 16
EXAMPLE 
 AdventureWorks-Database 
 Scenario: 
 Advertising campaign for a new bike 
 Identification of the target group 
 Solution: 
 Decision Tree 
 Identify relevant attributes in several iterations 
Lachev, 2005, p. 238ff 
Simple 
Example 
12.02.2014 Agile Data Mining with Data Vault 2.0 17
Agile Data Mining with Data Vault 2.0 18 
10066 Records 
Attribute 
Marital 
Status 
Gender 
Yearly 
Income 
Total 
Children 
Education 
Number Cars 
Owned 
Commute 
Distance 
Occupation 
House Owner 
Flag 
Age
ITERATION 1: DATA VAULT 2.0 MODEL 
English 
Education 
Numbers Cars 
Owned 
Gender 
Marital Status 
Sat 
Customer 
Hub 
Customer 
Customer Key 
Commute 
Distance 
Age 
House Owner 
Flag 
English 
Occupation 
Sat Category 
Product 
Category 
12.02.2014 Agile Data Mining with Data Vault 2.0 19
ITERATION 1: RAPIDMINER PROCESS 
Data Gathering 
Data preparation 
Modeling 
12.02.2014 Agile Data Mining with Data Vault 2.0 20
ITERATION 1: DECISIONTREE MODEL 
12.02.2014 Agile Data Mining with Data Vault 2.0 21
ITERATION 1: RESULTS 
12.02.2014 Agile Data Mining with Data Vault 2.0 22
ITERATION 2: DATA VAULT 2.0 MODEL 
English 
Education 
Numbers Cars 
Owned 
Gender 
Marital Status 
Sat 
Customer 
Hub 
Customer 
Sat Customer 
Income 
Customer Key 
Commute 
Distance 
Age 
House Owner 
Flag 
English 
Occupation 
Sat Customer 
Children 
Sat Category 
Total 
Children 
Yearly 
Income 
Product 
Category 
12.02.2014 Agile Data Mining with Data Vault 2.0 23
ITERATION 2: RAPIDMINER PROCESS 
Data Gathering 
Preparation Modeling 
12.02.2014 Agile Data Mining with Data Vault 2.0 24
ITERATION 2: RESULTS 
+4.01% 
12.02.2014 Agile Data Mining with Data Vault 2.0 25
ITERATION 3: DATA VAULT 2.0 MODEL 
English 
Education 
Numbers Cars 
Owned 
Gender 
Marital Status 
Sat 
Customer 
Hub 
Customer 
Sat Customer 
Income 
Customer Key 
Commute 
Distance 
Age 
House Owner 
Flag 
English 
Occupation 
Sat Customer 
Children 
Sat Category 
Total 
Children 
Yearly 
Income 
Product 
Category 
Commute 
Distance Miles 
CSat Customer 
Distance 
12.02.2014 Agile Data Mining with Data Vault 2.0 26
ITERATION 3: RAPIDMINER PROCESS 
Data Gathering 
Preparation Modeling 
12.02.2014 Agile Data Mining with Data Vault 2.0 27
ITERATION 3: RESULTS 
+0.12% 
12.02.2014 Agile Data Mining with Data Vault 2.0 28
CONCLUSIONS 
Agile Data Mining with DataVault 2.0 
Agile 12.02.2014 Data Mining with Data Vault 2.0 29
CONCLUSIONS 
 Data Vault is a flexible data 
model, with good support for agile project 
methodology 
 DataVault is not an additional hurdle in data mining 
projects 
 Additional attributes can be added at any time during 
the project, in an incremental fashion 
Business Vault: transparent data processing 
12.02.2014 Agile Data Mining with Data Vault 2.0 30
FURTHER INFORMATION 
Appears 
2015 
Available 
Www.doerffler.com WWW.datavault.de Www.learndatavault.com 
Appears 
2015 
12.02.2014 Agile Data Mining with Data Vault 2.0 31
Give us feedback 
Agile Data Mining with Data Vault 2.0 32 
Http://goo.gl/LGO4ze 
Source:Vasilijonline.com 
12.02.2014
Ad

More Related Content

What's hot (20)

Introduction To Data Vault - DAMA Oregon 2012
Introduction To Data Vault - DAMA Oregon 2012Introduction To Data Vault - DAMA Oregon 2012
Introduction To Data Vault - DAMA Oregon 2012
Empowered Holdings, LLC
 
Data Vault Overview
Data Vault OverviewData Vault Overview
Data Vault Overview
Empowered Holdings, LLC
 
Why Data Vault?
Why Data Vault? Why Data Vault?
Why Data Vault?
Kent Graziano
 
Practical introduction to hadoop
Practical introduction to hadoopPractical introduction to hadoop
Practical introduction to hadoop
inside-BigData.com
 
Operational Data Vault
Operational Data VaultOperational Data Vault
Operational Data Vault
Empowered Holdings, LLC
 
Snowflake: The most cost-effective agile and scalable data warehouse ever!
Snowflake: The most cost-effective agile and scalable data warehouse ever!Snowflake: The most cost-effective agile and scalable data warehouse ever!
Snowflake: The most cost-effective agile and scalable data warehouse ever!
Visual_BI
 
Designing modern dw and data lake
Designing modern dw and data lakeDesigning modern dw and data lake
Designing modern dw and data lake
punedevscom
 
Cours Big Data Part I
Cours Big Data Part ICours Big Data Part I
Cours Big Data Part I
Mohamed Faïçal ESSALIFI
 
Actionable Insights with AI - Snowflake for Data Science
Actionable Insights with AI - Snowflake for Data ScienceActionable Insights with AI - Snowflake for Data Science
Actionable Insights with AI - Snowflake for Data Science
Harald Erb
 
Introduction à la big data v3
Introduction à la big data v3 Introduction à la big data v3
Introduction à la big data v3
Mehdi TAZI
 
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need BothThe Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
Adaryl "Bob" Wakefield, MBA
 
Big data architectures
Big data architecturesBig data architectures
Big data architectures
Mariem Khalfaoui
 
Building an Effective Data Warehouse Architecture
Building an Effective Data Warehouse ArchitectureBuilding an Effective Data Warehouse Architecture
Building an Effective Data Warehouse Architecture
James Serra
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Chapitre 2 hadoop
Chapitre 2 hadoopChapitre 2 hadoop
Chapitre 2 hadoop
Mouna Torjmen
 
Technologies pour le Big Data
Technologies pour le Big DataTechnologies pour le Big Data
Technologies pour le Big Data
Minyar Sassi Hidri
 
Big Data : concepts, cas d'usage et tendances
Big Data : concepts, cas d'usage et tendancesBig Data : concepts, cas d'usage et tendances
Big Data : concepts, cas d'usage et tendances
Jean-Michel Franco
 
Intro to Data Vault 2.0 on Snowflake
Intro to Data Vault 2.0 on SnowflakeIntro to Data Vault 2.0 on Snowflake
Intro to Data Vault 2.0 on Snowflake
Kent Graziano
 
Projet Bi - 3 - Alimentation des données
Projet Bi - 3 - Alimentation des donnéesProjet Bi - 3 - Alimentation des données
Projet Bi - 3 - Alimentation des données
Jean-Marc Dupont
 
Introduction To Data Vault - DAMA Oregon 2012
Introduction To Data Vault - DAMA Oregon 2012Introduction To Data Vault - DAMA Oregon 2012
Introduction To Data Vault - DAMA Oregon 2012
Empowered Holdings, LLC
 
Practical introduction to hadoop
Practical introduction to hadoopPractical introduction to hadoop
Practical introduction to hadoop
inside-BigData.com
 
Snowflake: The most cost-effective agile and scalable data warehouse ever!
Snowflake: The most cost-effective agile and scalable data warehouse ever!Snowflake: The most cost-effective agile and scalable data warehouse ever!
Snowflake: The most cost-effective agile and scalable data warehouse ever!
Visual_BI
 
Designing modern dw and data lake
Designing modern dw and data lakeDesigning modern dw and data lake
Designing modern dw and data lake
punedevscom
 
Actionable Insights with AI - Snowflake for Data Science
Actionable Insights with AI - Snowflake for Data ScienceActionable Insights with AI - Snowflake for Data Science
Actionable Insights with AI - Snowflake for Data Science
Harald Erb
 
Introduction à la big data v3
Introduction à la big data v3 Introduction à la big data v3
Introduction à la big data v3
Mehdi TAZI
 
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need BothThe Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
Adaryl "Bob" Wakefield, MBA
 
Building an Effective Data Warehouse Architecture
Building an Effective Data Warehouse ArchitectureBuilding an Effective Data Warehouse Architecture
Building an Effective Data Warehouse Architecture
James Serra
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Big Data : concepts, cas d'usage et tendances
Big Data : concepts, cas d'usage et tendancesBig Data : concepts, cas d'usage et tendances
Big Data : concepts, cas d'usage et tendances
Jean-Michel Franco
 
Intro to Data Vault 2.0 on Snowflake
Intro to Data Vault 2.0 on SnowflakeIntro to Data Vault 2.0 on Snowflake
Intro to Data Vault 2.0 on Snowflake
Kent Graziano
 
Projet Bi - 3 - Alimentation des données
Projet Bi - 3 - Alimentation des donnéesProjet Bi - 3 - Alimentation des données
Projet Bi - 3 - Alimentation des données
Jean-Marc Dupont
 

Similar to Agile Data Mining with Data Vault 2.0 (english) (20)

Building Resiliency and Agility with Data Virtualization for the New Normal
Building Resiliency and Agility with Data Virtualization for the New NormalBuilding Resiliency and Agility with Data Virtualization for the New Normal
Building Resiliency and Agility with Data Virtualization for the New Normal
Denodo
 
Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Making Big Data Analytics with Hadoop fast & easy (webinar slides)Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Yellowfin
 
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Denodo
 
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
IngridBuenaventura
 
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo
 
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Denodo
 
Slides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-CloudSlides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-Cloud
DATAVERSITY
 
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, ClouderaMongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB
 
Multi-Cloud Data Integration with Data Virtualization (APAC)
Multi-Cloud Data Integration with Data Virtualization (APAC)Multi-Cloud Data Integration with Data Virtualization (APAC)
Multi-Cloud Data Integration with Data Virtualization (APAC)
Denodo
 
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Denodo
 
Trends for Modernizing Analytics and Data Warehousing in 2019
Trends for Modernizing Analytics and Data Warehousing in 2019Trends for Modernizing Analytics and Data Warehousing in 2019
Trends for Modernizing Analytics and Data Warehousing in 2019
Arcadia Data
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
451 Research + NuoDB: What It Means to be a Container-Native SQL Database
451 Research + NuoDB: What It Means to be a Container-Native SQL Database451 Research + NuoDB: What It Means to be a Container-Native SQL Database
451 Research + NuoDB: What It Means to be a Container-Native SQL Database
NuoDB
 
Self-Service Analytics with Guard Rails
Self-Service Analytics with Guard RailsSelf-Service Analytics with Guard Rails
Self-Service Analytics with Guard Rails
Denodo
 
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Denodo
 
When and How Data Lakes Fit into a Modern Data Architecture
When and How Data Lakes Fit into a Modern Data ArchitectureWhen and How Data Lakes Fit into a Modern Data Architecture
When and How Data Lakes Fit into a Modern Data Architecture
DATAVERSITY
 
TechEvent DWH Modernization
TechEvent DWH ModernizationTechEvent DWH Modernization
TechEvent DWH Modernization
Trivadis
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Building Resiliency and Agility with Data Virtualization for the New Normal
Building Resiliency and Agility with Data Virtualization for the New NormalBuilding Resiliency and Agility with Data Virtualization for the New Normal
Building Resiliency and Agility with Data Virtualization for the New Normal
Denodo
 
Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Making Big Data Analytics with Hadoop fast & easy (webinar slides)Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Making Big Data Analytics with Hadoop fast & easy (webinar slides)
Yellowfin
 
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Innovative Data Strategies for Advanced Analytics Solutions and the Role of D...
Denodo
 
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
By Thoughtworks | Building data as a product: The key to unlocking Data Mesh'...
IngridBuenaventura
 
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo
 
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Denodo
 
Slides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-CloudSlides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-Cloud
DATAVERSITY
 
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, ClouderaMongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB IoT City Tour STUTTGART: Hadoop and future data management. By, Cloudera
MongoDB
 
Multi-Cloud Data Integration with Data Virtualization (APAC)
Multi-Cloud Data Integration with Data Virtualization (APAC)Multi-Cloud Data Integration with Data Virtualization (APAC)
Multi-Cloud Data Integration with Data Virtualization (APAC)
Denodo
 
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Denodo
 
Trends for Modernizing Analytics and Data Warehousing in 2019
Trends for Modernizing Analytics and Data Warehousing in 2019Trends for Modernizing Analytics and Data Warehousing in 2019
Trends for Modernizing Analytics and Data Warehousing in 2019
Arcadia Data
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
451 Research + NuoDB: What It Means to be a Container-Native SQL Database
451 Research + NuoDB: What It Means to be a Container-Native SQL Database451 Research + NuoDB: What It Means to be a Container-Native SQL Database
451 Research + NuoDB: What It Means to be a Container-Native SQL Database
NuoDB
 
Self-Service Analytics with Guard Rails
Self-Service Analytics with Guard RailsSelf-Service Analytics with Guard Rails
Self-Service Analytics with Guard Rails
Denodo
 
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
Denodo
 
When and How Data Lakes Fit into a Modern Data Architecture
When and How Data Lakes Fit into a Modern Data ArchitectureWhen and How Data Lakes Fit into a Modern Data Architecture
When and How Data Lakes Fit into a Modern Data Architecture
DATAVERSITY
 
TechEvent DWH Modernization
TechEvent DWH ModernizationTechEvent DWH Modernization
TechEvent DWH Modernization
Trivadis
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Ad

More from Michael Olschimke (9)

Agiles Data Mining mit Data Vault 2.0
Agiles Data Mining mit Data Vault 2.0Agiles Data Mining mit Data Vault 2.0
Agiles Data Mining mit Data Vault 2.0
Michael Olschimke
 
Introduction to Salesforce CRM Reporting
Introduction to Salesforce CRM ReportingIntroduction to Salesforce CRM Reporting
Introduction to Salesforce CRM Reporting
Michael Olschimke
 
Introduction to Google Analytics
Introduction to Google AnalyticsIntroduction to Google Analytics
Introduction to Google Analytics
Michael Olschimke
 
Visual Data Vault
Visual Data VaultVisual Data Vault
Visual Data Vault
Michael Olschimke
 
Introduction to Piwik
Introduction to PiwikIntroduction to Piwik
Introduction to Piwik
Michael Olschimke
 
Business Concepts for Mobile Applications
Business Concepts for Mobile ApplicationsBusiness Concepts for Mobile Applications
Business Concepts for Mobile Applications
Michael Olschimke
 
Technology Concepts for Mobile Applications
Technology Concepts for Mobile ApplicationsTechnology Concepts for Mobile Applications
Technology Concepts for Mobile Applications
Michael Olschimke
 
Ethische Entscheidungskompetenz
Ethische EntscheidungskompetenzEthische Entscheidungskompetenz
Ethische Entscheidungskompetenz
Michael Olschimke
 
Data Modeling Zone 2013
Data Modeling Zone 2013Data Modeling Zone 2013
Data Modeling Zone 2013
Michael Olschimke
 
Agiles Data Mining mit Data Vault 2.0
Agiles Data Mining mit Data Vault 2.0Agiles Data Mining mit Data Vault 2.0
Agiles Data Mining mit Data Vault 2.0
Michael Olschimke
 
Introduction to Salesforce CRM Reporting
Introduction to Salesforce CRM ReportingIntroduction to Salesforce CRM Reporting
Introduction to Salesforce CRM Reporting
Michael Olschimke
 
Introduction to Google Analytics
Introduction to Google AnalyticsIntroduction to Google Analytics
Introduction to Google Analytics
Michael Olschimke
 
Business Concepts for Mobile Applications
Business Concepts for Mobile ApplicationsBusiness Concepts for Mobile Applications
Business Concepts for Mobile Applications
Michael Olschimke
 
Technology Concepts for Mobile Applications
Technology Concepts for Mobile ApplicationsTechnology Concepts for Mobile Applications
Technology Concepts for Mobile Applications
Michael Olschimke
 
Ethische Entscheidungskompetenz
Ethische EntscheidungskompetenzEthische Entscheidungskompetenz
Ethische Entscheidungskompetenz
Michael Olschimke
 
Ad

Recently uploaded (20)

03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 

Agile Data Mining with Data Vault 2.0 (english)

  • 1. AGILE DATA MINING WITH DATA VAULT 2.0 Timo Cirkel, Michael Olschimke Dörffler & Partner GmbH
  • 2. Introduction Background Example Conclusion AGENDA Agile 12.02.2014 Data Mining with Data Vault 2.0 2
  • 3. INTRODUCTION Agile Data Mining with DataVault 2.0 Agile 12.02.2014 Data Mining with Data Vault 2.0 3
  • 4. TIMO CIRKEL BI-Consultant Certified Data Vault 2.0 Practitioner Analysis Of Policyholders Specialized inCRM, Software Development, DWHAutomation Industries: Insurance, Energy B. Sc. Business Informatics 12.02.2014 Agile Data Mining with Data Vault 2.0 4
  • 5. MICHAEL OLSCHIMKE Senior BI-Consultant Certified Data Vault 2.0 Practitioner Official Data Vault 2.0 Trainer in Europe AssociateTeacher University of Hannover Specializing in Data Vault 2.0, Data Mining, CRM, project management Industries: Insurance, Automotive, Retail, Public Sector, Non-Profits 12.02.2014 Agile Data Mining with Data Vault 2.0 5
  • 6. • Medium-sized consulting firm • Official Partner of Dan Linstedt In Europe • Consulting, Training, Implementation • Industries: • Insurance • Automotive • Banks • Trade • Pharmaceuticals • Telecommunications DÖRFFLER & PARTNER GMBH 12.02.2014 Agile Data Mining With Data Vault 2.0 6
  • 7. BACKGROUND Agile Data Mining with DataVault 2.0 Agile 12.02.2014 Data Mining with Data Vault 2.0 7
  • 8. DATA MINING PROJECT IN THE VGH Motor insurance Customer segmentation A first datamining pilot, therefore: No specific requirements Vision is developed during project Agile Project Methodology Close co-operation with business 12.02.2014 Agile Data Mining with Data Vault 2.0 8
  • 9. • Extracting information from existing data and Patterns • Four (large) categories: • Segmentation • Classification • Prediction • Association • Wide range of available algorithms and methods DATA MINING PROJECTS "The term Data Mining ... describes the extraction implicitly existing, non-trivial and useful knowledge from large, dynamic, relatively complex structured data." Datenbank Anwendung Anwender Data-Mining- Techniken Aussagen, Regeln & Informationen Data Dictionary Fachwissen 12.02.2014 Agile Data Mining with Data Vault 2.0 9
  • 10. DATA VAULT 2.0 MODELING Surrogate Key Business Keys Foreign Keys Descriptors In accordance with its own representation Linstedt, 2014 12.02.2014 Agile Data Mining with Data Vault 2.0 10
  • 11. DATA VAULT 2.0 METHODOLOGY Data Vault 2.0 Methodology Six Sigma TQM Scrum CMMI PMP SDLC 12.02.2014 Agile Data Mining with Data Vault 2.0 11
  • 12. DATA VAULT 2.0 METHODOLOGY FOR DATA MINING Advantages • Agile project management for DWH projects • Automation and generation • Rapid adoption to changes in the model • Incremental build-out = incremental cost control • Targeted delivery = two week sprints • Predictable and measurable results Disadvantages • Focus on loading of raw data and the production of information • Not many data mining references • Many concepts in the methodology are not applicable for data mining projects • Difficult scaling of team sizes in data mining projects 12.02.2014 Agile Data Mining with Data Vault 2.0 12
  • 13. CRISP-DM Own Representation in accordance with Chapman, et al. , 2000 12.02.2014 Agile Data Mining with Data Vault 2.0 13
  • 14. PROCESS MODEL Prozessmodell – VGH Kundensegmentierung ivv KTC D & P Daten in Data Vault Modell speichern Daten abziehen Algorithmus auswählen Segmentierung ausführen Ergebnis erzielt? Ja Ergebnis präsentieren Ergebnis ok? Ende Ja Start Gütefunktion erarbeiten SQL-Query erstellen Relevante VN-Attribute ermitteln Nein Formel ok? Ja Nein Algorithmen erforschen Nein Geeigneter Algorithmus gefunden? Ja Nein 12.02.2014 Agile Data Mining with Data Vault 2.0 14
  • 15. RAPIDMINER  Java-based data mining software  One of the most widely used data mining tools  Offers  Environment fo r control flow  Large number of algorithms  Large choice of data sources Overall CorporaTE Consultants Academics NGO / GOV'T © 2012 Rexer AnalYTICS 12.02.2014 Agile Data Mining with Data Vault 2.0 15
  • 16. EXAMPLE Agile Data Mining with DataVault 2.0 Agile 12.02.2014 Data Mining with Data Vault 2.0 16
  • 17. EXAMPLE  AdventureWorks-Database  Scenario:  Advertising campaign for a new bike  Identification of the target group  Solution:  Decision Tree  Identify relevant attributes in several iterations Lachev, 2005, p. 238ff Simple Example 12.02.2014 Agile Data Mining with Data Vault 2.0 17
  • 18. Agile Data Mining with Data Vault 2.0 18 10066 Records Attribute Marital Status Gender Yearly Income Total Children Education Number Cars Owned Commute Distance Occupation House Owner Flag Age
  • 19. ITERATION 1: DATA VAULT 2.0 MODEL English Education Numbers Cars Owned Gender Marital Status Sat Customer Hub Customer Customer Key Commute Distance Age House Owner Flag English Occupation Sat Category Product Category 12.02.2014 Agile Data Mining with Data Vault 2.0 19
  • 20. ITERATION 1: RAPIDMINER PROCESS Data Gathering Data preparation Modeling 12.02.2014 Agile Data Mining with Data Vault 2.0 20
  • 21. ITERATION 1: DECISIONTREE MODEL 12.02.2014 Agile Data Mining with Data Vault 2.0 21
  • 22. ITERATION 1: RESULTS 12.02.2014 Agile Data Mining with Data Vault 2.0 22
  • 23. ITERATION 2: DATA VAULT 2.0 MODEL English Education Numbers Cars Owned Gender Marital Status Sat Customer Hub Customer Sat Customer Income Customer Key Commute Distance Age House Owner Flag English Occupation Sat Customer Children Sat Category Total Children Yearly Income Product Category 12.02.2014 Agile Data Mining with Data Vault 2.0 23
  • 24. ITERATION 2: RAPIDMINER PROCESS Data Gathering Preparation Modeling 12.02.2014 Agile Data Mining with Data Vault 2.0 24
  • 25. ITERATION 2: RESULTS +4.01% 12.02.2014 Agile Data Mining with Data Vault 2.0 25
  • 26. ITERATION 3: DATA VAULT 2.0 MODEL English Education Numbers Cars Owned Gender Marital Status Sat Customer Hub Customer Sat Customer Income Customer Key Commute Distance Age House Owner Flag English Occupation Sat Customer Children Sat Category Total Children Yearly Income Product Category Commute Distance Miles CSat Customer Distance 12.02.2014 Agile Data Mining with Data Vault 2.0 26
  • 27. ITERATION 3: RAPIDMINER PROCESS Data Gathering Preparation Modeling 12.02.2014 Agile Data Mining with Data Vault 2.0 27
  • 28. ITERATION 3: RESULTS +0.12% 12.02.2014 Agile Data Mining with Data Vault 2.0 28
  • 29. CONCLUSIONS Agile Data Mining with DataVault 2.0 Agile 12.02.2014 Data Mining with Data Vault 2.0 29
  • 30. CONCLUSIONS  Data Vault is a flexible data model, with good support for agile project methodology  DataVault is not an additional hurdle in data mining projects  Additional attributes can be added at any time during the project, in an incremental fashion Business Vault: transparent data processing 12.02.2014 Agile Data Mining with Data Vault 2.0 30
  • 31. FURTHER INFORMATION Appears 2015 Available Www.doerffler.com WWW.datavault.de Www.learndatavault.com Appears 2015 12.02.2014 Agile Data Mining with Data Vault 2.0 31
  • 32. Give us feedback Agile Data Mining with Data Vault 2.0 32 Http://goo.gl/LGO4ze Source:Vasilijonline.com 12.02.2014

Editor's Notes

  • #2: In This Slides Only The logos Replace. To Try it out New Design /Discuss Have We No Time
  • #9: Short On the DM Project In The VGH Comment. On the BI Spectrum Article Point out Objectives The Project Used Tools. Crisp-DM Used. Etc. GGF. For more Slides Open Name The insurance? No specific requirements Attributes evolve over time "Customer" does not exactly define first Only private clients or companies? Policyholders or vehicle owners? What kinds of contracts? How are "good" customers?
  • #11: Hubs, Left, Satellite Short Explains With VDV. Take a look at In the Folder Sources, There Can You You Use.
  • #18: We can no data and Findings of the VGH present Therefore to avoid AdventureWorks Setup took over from book
  • #19: Short On Adenture Works DW Comment Background Information Model of the Relevant Tables 25 Attributes, 500k Records
  • #20: On the First DV model Comment.
  • #21: Demo in Rapidminer Also On Measures Comment (Accuracy, Or Precision/recall).  On Best Graphically In Rm Represent.
  • #23: Scatter Matrix Confusion matrix (performance matrix).
  • #24: On the Changes The DV Model Comment. Show As The Then Looks like.  Changes Comprehensible Make (On Animations)
  • #25: Demo in Rapidminer Also On Measures Comment (Accuracy, Or Precision/recall).  On Best Graphically In Rm Represent.
  • #27: On the Changes The DV Model Comment. Show As The Then Looks like.  Changes Comprehensible Make (On Animations)
  • #28: Demo in Rapidminer Also On Measures Comment (Accuracy, Or Precision/recall).  On Best Graphically In Rm Represent.
  • #31: What Are The Benefits From Approach? Reference The VGH Project Take, But Also On the demo
  • #33: TBC: Link Revise (Make I)