SlideShare a Scribd company logo
Introducing Agile Business
Intelligence Sustainably:
Implement the Right Building
Blocks in the Right Order
Workshop Excercises
Raphael Branger, IT-Logix AG
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
ERP, CRM, Excel,
…
Weather data,
Demographic
data, Social
Media…
The BI strategy is rooted in the overall business strategy. The IT strategy provides
guidance regarding its implementation. On the other hand, BI can be seen as a
company in the company: You have a market (& your BI offerings) as well as
customers. Typically a fast «time to market» for a BI solution is critical to your
customers!
A BI strategy consists of a vision and
mission statement. It defines objectives
which are broken down in partial strategies
(organisation, data, applications).
Development speed & high agility is often
an objective – an agile mindset and values
are the strategic guidelines to implement
the strategy.
One needs BI-specific processes to develop new solutions as well as
operate, maintain and extend existing solutions. Agile processes like
Disciplined Agile are well suited to fullfil strategic objectives.
BI needs a dedicated organisation. Following an
agile path, you should organize resources around
teams, not projects.
Data from various sources is Extracted,
Tranformed and Loaded into a central place,
the data warehouse (DWH). During this
process data is technically cleansed,
semantically and often technically integrated.
History of records is preserved. The DWH
contains the facts (what is delivered by the
source).
Data marts put facts (from
the DWH) into a specific
context. The context
drives the application of
business rules valid for
this context. Data marts
provide a «semantic
layer» to translate
technical attribute names
into end user language.
BI Applications are the visible part of a BI system. A
BI application typically consists of two layers:
information products (like reports, dashboards or
data science based predictions) as well as an
underlaying server platform (providing features like
authentication & autorisation, scheduling, web &
mobile access etc.)
ABIsystemcanserveabroadrangeofusergroups.These
includeemployeesofthecompanyitselfbutaswellofpartners
likesuppliersexternaltothecompany.Sometimeseven
customerscanaccessandusetheBIsystem
From left to right data is refined to information and knowledge. On the left side we tend to find more technical metadata like «from which
source does this record come from». The more we get closer to the end user we’ll have more business metadata like the definition of a certain
measure. Process metadata gives us information about how the data was transported through the system, e.g. «when was the data
refreshed».
A data scientist works with data from various sources incl. the DWH or data marts. It employs techniques and
theories drawn from many fields within the broad areas of mathematics, statistics, information science, and
computer science, in particular from the subdomains of machine learning, classification, cluster analysis, data
mining, databases, and visualization (Source: Wikipedia)
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
EXERCISE 2 «AGILE BI BUILDING BLOCKS»
7
IT-LOGIX AGILE BI BUILDING BLOCKS (V2.0 EN)
Agility
Amount of
upfront design needed
Basic
Infrastructure
Basic Patterns &
Standards
Agile Mindset & Organisation
AgileBasics&Mindset
Agile Infrastructure & Patterns
BI-specific
User Stories
Envision Cycle &
Inception Phase
No / Relative
Estimating
(Self Organizing)
Team
Workspace &
Co-Location
Identify & Apply
Design Patterns
Version Control
Test Automation
Test Driven
Development
Sandbox
Development
Infrastructure
Continuous
Integration
Push-Button
Deployments
Multi Layer
Refactoring
Heavy Iterative
Data Modeling
Gulf
Chasm
Agile Contracting
Scriptable BI/DWH
toolset
«Tweaked» Waterfall
«Timeboxed» Iterations
«Lean» Development
Lean & Fast
Processes
Legend
Processes
& Organi-
sation
Develop-
ment
Methods
Techno-
logies
Values &
Principles
© by Raphael Branger, IT-Logix AG, www.it-logix.ch
Data Lab
Sandboxes
Continuous Delivery
Data Modeling &
Metadata Mgt.
Data Warehouse
Automation
Basic Refactoring
Additive Iterative
Data Modeling
10
2
3
4
5
6
71
8
9
11
12
13
14
15
16
17
18
Individuals and interactions over processes and tools
Working BI solution over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
Source:
https://www.infoq.com/articles/modern-agile-intro
http://www.agilemanifesto.org
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
600
750
450
Estimate:
“to judge tentatively or approximately
the value, worth, or significance of”
(Merriam-Webster)
An estimate is unbiased.
An estimate is subjective.
What is a good estimate?
If the estimate is +- 25% of the actual
value, for 75% of all cases.
(Source: Conte, Dunsmore, and Shen 1986, in: Steve McConnell, Software Estimation:
Demystifying the Black Art)
Story points help to estimate tasks / stories.
Planning poker helps with relative
estimation as it compares the effort
between several tasks or stories.
«Estimates do not directly add value to your
process, so we want to find ways to reduce
the estimation process or even stop it where
possible»
(Vasco Duarte)
Team Lead = “Facilitator”
Product Owner
“most important” decision maker
Business person who actively
participates throughout the project
Responsible for the product vision
of the BI solution
Prioritizes the tasks to maximize the
value for the stakeholder
Architecture Owner
Represents the enterprise IT
architecture
Ensures that the BI solution fits into
the governance
Source: http://www.disciplinedagiledelivery.com/roles-on-dad-teams/
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
Is the Envision – Explore approach feasible at all
in highly regulated environments with a lot of compliance requirements?
Trust is important to work exploratorily.
?
15
Source & Copyright: Peter Stevens, http://www.scrum-breakfast.com/
Source: DataViz for Dummies / http://bidashboardformula.com/
Model Driven Approach
Data Driven Approach
A definition by Dr. Barry Devlin:
“Data warehouse automation is the use of an integrated
set of tools and techniques that automate the design,
delivery and maintenance of data warehouses and
marts .”
automation addresses the old conundrum of
delivering consistent, quality data in the
timeframe demanded by modern business
needs
streamlining the overall process provides a
single repository of metadata and integrated
tooling to speed and simplify development
business and IT can truly collaborate with an
agile approach
http://www.mid.de/leistungen/tools/innovator
https://www.wherescape.com/products-services/our-software-products/
In theory it would be ideal if the content of a “release” is kept in one place.
How to deal with this idea in practice is highly dependent on the available tools and their own versioning capabilities.
Don’t forget there is a close link between versioning and deployment.
Tool Specific Versioning
18
Generic Versioning
DWA /
ETL Tool
BI Tool 1
BI Tool 2
Files, Scripts, …
Versioning Tool
Development Versioning Release VersioningExport to archive file
Development Environment Test Environment Production Environment
Versioning
Deployment
Source: Amber Debroux and Chris reed, “How to Build Trust in Your Data Warehouse”, in Business Intelligence Journal, Volume 20, Number 1, S. 50
Source: www.disciplinedagiledelivery.com/lifecycle/
Allocate a Data Story to a “Timeline Type”:
Discrete Event:
Customers purchases product in a store.
Recurring Event:
Customers generate revenue.
Evolving Event:
Customer orders product in the online-shop.
A Timeline Type can be mapped with a Design
Pattern for the corresponding fact table:
Discrete Event:
Transaction Fact Table
Recurring Event:
Periodic Snapshot Fact Table
Evolving Event:
Accumulating Snapshot Fact Table
Design Patterns from the different Fact Tables
can used to formulate Design Pattern for the
corresponding ETL (ELT) transformations…
Source: www.modelstorming.com/
Source: http://www.agiledata.org/essays/databaseRefactoring.html
Source: http://www.agilemodeling.com/essays/introductionToAM.htm
Source: http://agiledata.org/essays/tdd.html
Source: https://bigeval.com/en/data-warehouse-etl-testing/
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
Checkout what is
needed from the
Version Control
Development of
all DBs and
DB-Schemas
Development of
all physical
data models
Installation of all
needed stored
procedures
Installation of all
ETL-Modules
Configuration of
OLAP-Cube
(if needed)
Frontend
Installation
(Dashboards,
Reports, etc.)
Configure
DB-connection
Execute initial
Dataload
Build
OLAP-Cube
Execute and
automate testing
EXERCISE 3 «BI USER STORIES»
Exercise 3 «BI User Stories»
DWH
Gather together in teams of two to four
people.
Take the excercise sheets handed out.
FactEventParticipant
RegisterDate
EventID
ParticipantID
NoShow (Y/N)
(Count participants)
DimEvent
EventDate
Country
City
Venue Address
Location (Geo)
Max. Participants
DimDate_Register
DateValue
DimParticipant
Name
Member Category
Roundtable
Registration
System
(Web Service
or CSV export)
TDWI
Membership
System
(SQL Server)
Define at least three user stories. Remember the User
Story should be small enough to be implmented in 1
single day.
Timebox 10 minutes.
DWH
Automation
Tool
Feature 1
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
Feature (following the regular User Story schema):
As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable
event so that I can organize the logistics for this event.
Connectivity Epic (following the FDD schema) (<action> the <result> <by|for|of|to> <object>)
Extract the event and participant data of the web based Roundtable Registration System to a CSV file.
Connectivity User Story (following the FDD schema):
Manually export the event and participant data for all events to a CSV file.
<write a couple of other stories>
Possible User Stories (Connectivity & Infrastructure)
Feature (following the regular User Story schema):
As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable event
so that I can organize the logistics for this event.
DWH Epic (following the FDD schema) (<action> the <result> <by|for|of|to> <object>)
Model and load the event and participant data of the web based Roundtable Registration System to the DWH
and Data Mart.
DWH User Story (following the FDD schema):
Model and (full) load the event master data (without Location / Geo info, not historized) to DimEvent on the
DWH layer.
<write a couple of other stories>
Possible User Stories (DWH)
Feature (following the regular User Story schema):
As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable
event so that I can organize the logistics for this event.
BI Application Epic (following the regular User Story schema)
As a TDWI Backoffice employee, I need a BI application to see the number of registered participants for
a Roundtable event so that I can organize the catering for this event.
BI Application User Story (following the regular User Story schema):
As a TDWI Backoffice employee I need to see the number of registered participants for the next
Roundtable in a selected location so that I can organize the catering for this event.
<write a couple of other stories>
Possible User Stories (BI Application)

More Related Content

What's hot (20)

PDF
Comparative Agile Measurement System - Ciklum White Paper
Ciklum Ukraine
 
PPTX
DevopsBusinessCaseTemplate
Peter Lamar
 
PPTX
Agile Methodology PPT
Mohit Kumar
 
PDF
How to become a great DevOps Leader, an ITSM Academy Webinar
ITSM Academy, Inc.
 
PPTX
Data summit connect fall 2020 - rise of data ops
Ryan Gross
 
DOC
Ravikanth_CV_10 yrs_ETL-BI-BigData-Testing
Ravikanth Marpuri
 
PPTX
IdeaScreen 2013
Vision Critical
 
PPT
Product Development
John Gibbon
 
PPTX
Agile, qa and data projects geek night 2020
Balvinder Hira
 
PPTX
ISTQB Agile Extension
Davis Thomas
 
PPT
]project-open[ Roll Out Plan
Klaus Hofeditz
 
PDF
Mobile DevOps: Rapid Response to Feedback and continuous delivery in a mobile...
Roger Snook
 
DOCX
Pragmatic Approach to Datawarehouse Testing_.docx
shankarmani
 
PPTX
AUG NYC May-24 event presentations
Madhusudhan Matrubai
 
PDF
DevOps Services Offerings from Rational Lab Services
IBM Rational software
 
PPT
Quality Assurance Comparison in Traditional and Agile Methodologies
coolbreeze130
 
PDF
Migrating to Cloud: Inhouse Hadoop to Databricks (3)
Knoldus Inc.
 
PDF
The value of benchmarking IT projects - H.S. van Heeringen
Harold van Heeringen
 
PPTX
Agile Testing and Test Automation
Naveen Kumar Singh
 
DOC
Deepanshu_Resume
Deepanshu naidu
 
Comparative Agile Measurement System - Ciklum White Paper
Ciklum Ukraine
 
DevopsBusinessCaseTemplate
Peter Lamar
 
Agile Methodology PPT
Mohit Kumar
 
How to become a great DevOps Leader, an ITSM Academy Webinar
ITSM Academy, Inc.
 
Data summit connect fall 2020 - rise of data ops
Ryan Gross
 
Ravikanth_CV_10 yrs_ETL-BI-BigData-Testing
Ravikanth Marpuri
 
IdeaScreen 2013
Vision Critical
 
Product Development
John Gibbon
 
Agile, qa and data projects geek night 2020
Balvinder Hira
 
ISTQB Agile Extension
Davis Thomas
 
]project-open[ Roll Out Plan
Klaus Hofeditz
 
Mobile DevOps: Rapid Response to Feedback and continuous delivery in a mobile...
Roger Snook
 
Pragmatic Approach to Datawarehouse Testing_.docx
shankarmani
 
AUG NYC May-24 event presentations
Madhusudhan Matrubai
 
DevOps Services Offerings from Rational Lab Services
IBM Rational software
 
Quality Assurance Comparison in Traditional and Agile Methodologies
coolbreeze130
 
Migrating to Cloud: Inhouse Hadoop to Databricks (3)
Knoldus Inc.
 
The value of benchmarking IT projects - H.S. van Heeringen
Harold van Heeringen
 
Agile Testing and Test Automation
Naveen Kumar Singh
 
Deepanshu_Resume
Deepanshu naidu
 

Similar to Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises (20)

DOCX
Abdul ETL Resume
Abdul mohammed
 
PDF
Software and Information Technology Glossary of Terms
Business Software Education Center
 
PDF
Real-time analytics in applications_ New Architectures - Bahaa Al Zubaidi.pdf
Bahaa Al Zubaidi
 
PPT
Business intelligence
Mustafa Ali Hassan, MBA
 
PDF
Confluent Partner Tech Talk with BearingPoint
confluent
 
PDF
Building a healthy data ecosystem around Kafka and Hadoop: Lessons learned at...
Yael Garten
 
PDF
Strata 2017 (San Jose): Building a healthy data ecosystem around Kafka and Ha...
Shirshanka Das
 
PDF
Augmentation, Collaboration, Governance: Defining the Future of Self-Service BI
Denodo
 
PDF
Jet Reports es la herramienta para construir el mejor BI y de forma mas rapida
CLARA CAMPROVIN
 
PPTX
SegmentOfOne
Dave Callaghan
 
PPTX
Top Big data Analytics tools: Emerging trends and Best practices
SpringPeople
 
PDF
Big data and oracle
Sourabh Saxena
 
PPTX
Business intelligence on cloud computing
06Vinit
 
PDF
Keyrus US Information
Julian Tong
 
PDF
Keyrus US Information
Devon Ziegenfuss
 
PPTX
Extreme SSAS- SQL 2011
Itay Braun
 
PDF
Shareinsights an-end-to-end-implementation-of-the-modern-analytics-archi...
Accelerite
 
PPTX
Hd insight overview
vhrocca
 
PDF
IT_RFO10-14-ITS_AppendixA_20100513
Alexander Doré
 
PDF
Flow-ABriefExplanation
Anthony Parziale
 
Abdul ETL Resume
Abdul mohammed
 
Software and Information Technology Glossary of Terms
Business Software Education Center
 
Real-time analytics in applications_ New Architectures - Bahaa Al Zubaidi.pdf
Bahaa Al Zubaidi
 
Business intelligence
Mustafa Ali Hassan, MBA
 
Confluent Partner Tech Talk with BearingPoint
confluent
 
Building a healthy data ecosystem around Kafka and Hadoop: Lessons learned at...
Yael Garten
 
Strata 2017 (San Jose): Building a healthy data ecosystem around Kafka and Ha...
Shirshanka Das
 
Augmentation, Collaboration, Governance: Defining the Future of Self-Service BI
Denodo
 
Jet Reports es la herramienta para construir el mejor BI y de forma mas rapida
CLARA CAMPROVIN
 
SegmentOfOne
Dave Callaghan
 
Top Big data Analytics tools: Emerging trends and Best practices
SpringPeople
 
Big data and oracle
Sourabh Saxena
 
Business intelligence on cloud computing
06Vinit
 
Keyrus US Information
Julian Tong
 
Keyrus US Information
Devon Ziegenfuss
 
Extreme SSAS- SQL 2011
Itay Braun
 
Shareinsights an-end-to-end-implementation-of-the-modern-analytics-archi...
Accelerite
 
Hd insight overview
vhrocca
 
IT_RFO10-14-ITS_AppendixA_20100513
Alexander Doré
 
Flow-ABriefExplanation
Anthony Parziale
 
Ad

Recently uploaded (20)

PPTX
Solution+Architecture+Review+-+Sample.pptx
manuvratsingh1
 
DOCX
Q1_LE_Mathematics 8_Lesson 4_Week 4.docx
ROWELLJAYMALAPIT
 
PDF
apidays Munich 2025 - Integrate Your APIs into the New AI Marketplace, Senthi...
apidays
 
DOCX
Online Delivery Restaurant idea and analyst the data
sejalsengar2323
 
PDF
apidays Munich 2025 - The Double Life of the API Product Manager, Emmanuel Pa...
apidays
 
PPTX
short term internship project on Data visualization
JMJCollegeComputerde
 
PDF
blockchain123456789012345678901234567890
tanvikhunt1003
 
PPTX
M1-T1.pptxM1-T1.pptxM1-T1.pptxM1-T1.pptx
teodoroferiarevanojr
 
PDF
SUMMER INTERNSHIP REPORT[1] (AutoRecovered) (6) (1).pdf
pandeydiksha814
 
PDF
Top Civil Engineer Canada Services111111
nengineeringfirms
 
PPTX
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
PDF
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
PDF
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 
PDF
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
PDF
apidays Munich 2025 - Developer Portals, API Catalogs, and Marketplaces, Miri...
apidays
 
PDF
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
PPTX
White Blue Simple Modern Enhancing Sales Strategy Presentation_20250724_21093...
RamNeymarjr
 
PPTX
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
PPTX
Credit Card Fraud Detection Presentation
rasmilalama
 
PPTX
Probability systematic sampling methods.pptx
PrakashRajput19
 
Solution+Architecture+Review+-+Sample.pptx
manuvratsingh1
 
Q1_LE_Mathematics 8_Lesson 4_Week 4.docx
ROWELLJAYMALAPIT
 
apidays Munich 2025 - Integrate Your APIs into the New AI Marketplace, Senthi...
apidays
 
Online Delivery Restaurant idea and analyst the data
sejalsengar2323
 
apidays Munich 2025 - The Double Life of the API Product Manager, Emmanuel Pa...
apidays
 
short term internship project on Data visualization
JMJCollegeComputerde
 
blockchain123456789012345678901234567890
tanvikhunt1003
 
M1-T1.pptxM1-T1.pptxM1-T1.pptxM1-T1.pptx
teodoroferiarevanojr
 
SUMMER INTERNSHIP REPORT[1] (AutoRecovered) (6) (1).pdf
pandeydiksha814
 
Top Civil Engineer Canada Services111111
nengineeringfirms
 
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
apidays Munich 2025 - Developer Portals, API Catalogs, and Marketplaces, Miri...
apidays
 
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
White Blue Simple Modern Enhancing Sales Strategy Presentation_20250724_21093...
RamNeymarjr
 
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
Credit Card Fraud Detection Presentation
rasmilalama
 
Probability systematic sampling methods.pptx
PrakashRajput19
 
Ad

Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises

  • 1. Introducing Agile Business Intelligence Sustainably: Implement the Right Building Blocks in the Right Order Workshop Excercises Raphael Branger, IT-Logix AG
  • 3. ERP, CRM, Excel, … Weather data, Demographic data, Social Media… The BI strategy is rooted in the overall business strategy. The IT strategy provides guidance regarding its implementation. On the other hand, BI can be seen as a company in the company: You have a market (& your BI offerings) as well as customers. Typically a fast «time to market» for a BI solution is critical to your customers! A BI strategy consists of a vision and mission statement. It defines objectives which are broken down in partial strategies (organisation, data, applications). Development speed & high agility is often an objective – an agile mindset and values are the strategic guidelines to implement the strategy. One needs BI-specific processes to develop new solutions as well as operate, maintain and extend existing solutions. Agile processes like Disciplined Agile are well suited to fullfil strategic objectives. BI needs a dedicated organisation. Following an agile path, you should organize resources around teams, not projects. Data from various sources is Extracted, Tranformed and Loaded into a central place, the data warehouse (DWH). During this process data is technically cleansed, semantically and often technically integrated. History of records is preserved. The DWH contains the facts (what is delivered by the source). Data marts put facts (from the DWH) into a specific context. The context drives the application of business rules valid for this context. Data marts provide a «semantic layer» to translate technical attribute names into end user language. BI Applications are the visible part of a BI system. A BI application typically consists of two layers: information products (like reports, dashboards or data science based predictions) as well as an underlaying server platform (providing features like authentication & autorisation, scheduling, web & mobile access etc.) ABIsystemcanserveabroadrangeofusergroups.These includeemployeesofthecompanyitselfbutaswellofpartners likesuppliersexternaltothecompany.Sometimeseven customerscanaccessandusetheBIsystem From left to right data is refined to information and knowledge. On the left side we tend to find more technical metadata like «from which source does this record come from». The more we get closer to the end user we’ll have more business metadata like the definition of a certain measure. Process metadata gives us information about how the data was transported through the system, e.g. «when was the data refreshed». A data scientist works with data from various sources incl. the DWH or data marts. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science, in particular from the subdomains of machine learning, classification, cluster analysis, data mining, databases, and visualization (Source: Wikipedia)
  • 5. EXERCISE 2 «AGILE BI BUILDING BLOCKS»
  • 6. 7 IT-LOGIX AGILE BI BUILDING BLOCKS (V2.0 EN) Agility Amount of upfront design needed Basic Infrastructure Basic Patterns & Standards Agile Mindset & Organisation AgileBasics&Mindset Agile Infrastructure & Patterns BI-specific User Stories Envision Cycle & Inception Phase No / Relative Estimating (Self Organizing) Team Workspace & Co-Location Identify & Apply Design Patterns Version Control Test Automation Test Driven Development Sandbox Development Infrastructure Continuous Integration Push-Button Deployments Multi Layer Refactoring Heavy Iterative Data Modeling Gulf Chasm Agile Contracting Scriptable BI/DWH toolset «Tweaked» Waterfall «Timeboxed» Iterations «Lean» Development Lean & Fast Processes Legend Processes & Organi- sation Develop- ment Methods Techno- logies Values & Principles © by Raphael Branger, IT-Logix AG, www.it-logix.ch Data Lab Sandboxes Continuous Delivery Data Modeling & Metadata Mgt. Data Warehouse Automation Basic Refactoring Additive Iterative Data Modeling 10 2 3 4 5 6 71 8 9 11 12 13 14 15 16 17 18
  • 7. Individuals and interactions over processes and tools Working BI solution over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan Source: https://www.infoq.com/articles/modern-agile-intro http://www.agilemanifesto.org
  • 10. 600 750 450 Estimate: “to judge tentatively or approximately the value, worth, or significance of” (Merriam-Webster) An estimate is unbiased. An estimate is subjective. What is a good estimate? If the estimate is +- 25% of the actual value, for 75% of all cases. (Source: Conte, Dunsmore, and Shen 1986, in: Steve McConnell, Software Estimation: Demystifying the Black Art) Story points help to estimate tasks / stories. Planning poker helps with relative estimation as it compares the effort between several tasks or stories. «Estimates do not directly add value to your process, so we want to find ways to reduce the estimation process or even stop it where possible» (Vasco Duarte)
  • 11. Team Lead = “Facilitator” Product Owner “most important” decision maker Business person who actively participates throughout the project Responsible for the product vision of the BI solution Prioritizes the tasks to maximize the value for the stakeholder Architecture Owner Represents the enterprise IT architecture Ensures that the BI solution fits into the governance Source: http://www.disciplinedagiledelivery.com/roles-on-dad-teams/
  • 13. Is the Envision – Explore approach feasible at all in highly regulated environments with a lot of compliance requirements? Trust is important to work exploratorily. ? 15 Source & Copyright: Peter Stevens, http://www.scrum-breakfast.com/
  • 14. Source: DataViz for Dummies / http://bidashboardformula.com/
  • 15. Model Driven Approach Data Driven Approach A definition by Dr. Barry Devlin: “Data warehouse automation is the use of an integrated set of tools and techniques that automate the design, delivery and maintenance of data warehouses and marts .” automation addresses the old conundrum of delivering consistent, quality data in the timeframe demanded by modern business needs streamlining the overall process provides a single repository of metadata and integrated tooling to speed and simplify development business and IT can truly collaborate with an agile approach http://www.mid.de/leistungen/tools/innovator https://www.wherescape.com/products-services/our-software-products/
  • 16. In theory it would be ideal if the content of a “release” is kept in one place. How to deal with this idea in practice is highly dependent on the available tools and their own versioning capabilities. Don’t forget there is a close link between versioning and deployment. Tool Specific Versioning 18 Generic Versioning DWA / ETL Tool BI Tool 1 BI Tool 2 Files, Scripts, … Versioning Tool Development Versioning Release VersioningExport to archive file Development Environment Test Environment Production Environment Versioning Deployment
  • 17. Source: Amber Debroux and Chris reed, “How to Build Trust in Your Data Warehouse”, in Business Intelligence Journal, Volume 20, Number 1, S. 50
  • 19. Allocate a Data Story to a “Timeline Type”: Discrete Event: Customers purchases product in a store. Recurring Event: Customers generate revenue. Evolving Event: Customer orders product in the online-shop. A Timeline Type can be mapped with a Design Pattern for the corresponding fact table: Discrete Event: Transaction Fact Table Recurring Event: Periodic Snapshot Fact Table Evolving Event: Accumulating Snapshot Fact Table Design Patterns from the different Fact Tables can used to formulate Design Pattern for the corresponding ETL (ELT) transformations… Source: www.modelstorming.com/
  • 24. Checkout what is needed from the Version Control Development of all DBs and DB-Schemas Development of all physical data models Installation of all needed stored procedures Installation of all ETL-Modules Configuration of OLAP-Cube (if needed) Frontend Installation (Dashboards, Reports, etc.) Configure DB-connection Execute initial Dataload Build OLAP-Cube Execute and automate testing
  • 25. EXERCISE 3 «BI USER STORIES»
  • 26. Exercise 3 «BI User Stories» DWH Gather together in teams of two to four people. Take the excercise sheets handed out. FactEventParticipant RegisterDate EventID ParticipantID NoShow (Y/N) (Count participants) DimEvent EventDate Country City Venue Address Location (Geo) Max. Participants DimDate_Register DateValue DimParticipant Name Member Category Roundtable Registration System (Web Service or CSV export) TDWI Membership System (SQL Server) Define at least three user stories. Remember the User Story should be small enough to be implmented in 1 single day. Timebox 10 minutes. DWH Automation Tool Feature 1
  • 28. Feature (following the regular User Story schema): As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable event so that I can organize the logistics for this event. Connectivity Epic (following the FDD schema) (<action> the <result> <by|for|of|to> <object>) Extract the event and participant data of the web based Roundtable Registration System to a CSV file. Connectivity User Story (following the FDD schema): Manually export the event and participant data for all events to a CSV file. <write a couple of other stories> Possible User Stories (Connectivity & Infrastructure)
  • 29. Feature (following the regular User Story schema): As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable event so that I can organize the logistics for this event. DWH Epic (following the FDD schema) (<action> the <result> <by|for|of|to> <object>) Model and load the event and participant data of the web based Roundtable Registration System to the DWH and Data Mart. DWH User Story (following the FDD schema): Model and (full) load the event master data (without Location / Geo info, not historized) to DimEvent on the DWH layer. <write a couple of other stories> Possible User Stories (DWH)
  • 30. Feature (following the regular User Story schema): As a TDWI Backoffice employee, I need to see the number of registered participants for a Roundtable event so that I can organize the logistics for this event. BI Application Epic (following the regular User Story schema) As a TDWI Backoffice employee, I need a BI application to see the number of registered participants for a Roundtable event so that I can organize the catering for this event. BI Application User Story (following the regular User Story schema): As a TDWI Backoffice employee I need to see the number of registered participants for the next Roundtable in a selected location so that I can organize the catering for this event. <write a couple of other stories> Possible User Stories (BI Application)