This document provides an overview of deep learning techniques including neural networks, convolutional neural networks (CNNs), and long short-term memory (LSTM) algorithms. It defines key concepts like Bayesian inference, heuristics, perceptrons, and backpropagation. It also describes how to configure neural networks by specifying hyperparameters, hidden layers, normalization methods, and training parameters. CNN architectures are explained including convolution, pooling, and applications in computer vision tasks. Finally, predictive maintenance using deep learning to predict equipment failures from sensor data is briefly discussed.