Data mining is the method or the activity of analyzing data from different perspectives and summarizing it
into useful information. There are several major data mining techniques that have been developed and are
used in the data mining projects which include association, classification, clustering, sequential patterns,
prediction and decision tree. Among different tasks in data mining, sequential pattern mining is one of the
most important tasks. Sequential pattern mining involves the mining of the subsequences that appear
frequently in a set of sequences. It has a variety of applications in several domains such as the analysis of
customer purchase patterns, protein sequence analysis, DNA analysis, gene sequence analysis, web access
patterns, seismologic data and weather observations. Various models and algorithms have been developed
for the efficient mining of sequential patterns in large amount of data. This research paper analyzes the
efficiency of three sequence generation algorithms namely GSP, SPADE and PrefixSpan on a retail dataset
by applying various performance factors. From the experimental results, it is observed that the PrefixSpan
algorithm is more efficient than other two algorithms.