The document presents a classification model for unstructured text documents that aims to support both generality and efficiency. The model follows the logical sequence of text classification steps and proposes a combination of techniques for each step. Specifically, it uses multinomial naive bayes classification with term frequency-inverse document frequency (TF-IDF) representation. The model is tested on the 20-Newsgroups dataset and results show improved performance over precision, recall, and f-score compared to other models.