Chinese discourse coherence modeling remains a challenge taskin Natural Language Processing
field.Existing approaches mostlyfocus on the need for feature engineering, whichadoptthe sophisticated
features to capture the logic or syntactic or semantic relationships acrosssentences within a text.In this
paper, we present an entity-drivenrecursive deep modelfor the Chinese discourse coherence evaluation
based on current English discourse coherenceneural network model. Specifically, to overcome the
shortage of identifying the entity(nouns) overlap across sentences in the currentmodel, Our combined
modelsuccessfully investigatesthe entities information into the recursive neural network
freamework.Evaluation results on both sentence ordering and machine translation coherence rating
task show the effectiveness of the proposed model, which significantly outperforms the existing strong
baseline.