This document provides an in-depth literature review of news classification through natural language processing (NLP). It discusses several existing approaches to news classification, including models that use convolutional neural networks (CNNs), graph-based approaches, and attention mechanisms. The document also notes that current search engines often return too many irrelevant results, so classification could help layer search results. It concludes that while many techniques have been developed, inconsistencies remain in effectively classifying news, so further research on combining NLP, feature extraction, and fuzzy logic is needed.