This paper proposes a deep learning framework that uses transfer learning and an XGBoost classifier to classify breast ultrasound images. It uses a VGG16 model pre-trained on general images to extract features from ultrasound images. These features are then classified using an XGBoost classifier. On a dataset of breast ultrasound images, the approach achieved 96.7% accuracy, and precision/recall/F-scores of 100%/96%/96% for benign images, 95%/97%/96% for malignant images, and 95%/98%/97% for normal images, outperforming other automatic image classification methods.