SlideShare a Scribd company logo
1
Analyzing and Interpreting
AWR Report
by
Satyendra Pasalapudi
@pasalapudi
2
Agenda
• AWR Overview
• Why AWR is powerful than Statspack?
• Top 5 Timed Events
• Oracle Time Model, Wait Classes, & Metrics
• Interpreting AWR
3
Automatic Workload Repository (AWR)
– Built-in repository of performance information (
Light Weight)
– Snapshots of database metrics taken every 60
minutes and retained for 7 days
– Foundation for all self-management functions
– Data to find root cause and suggest remedies.
MMON
In-memory
statistics
Snapshots
AWR
SGA
60 minutes
4
Managing the AWR
– Retention period
• The default is 7 days
• Consider storage needs
– Collection interval
• The default is
60 minutes
• Consider storage needs and performance impact
– Collection level
• Basic (disables most of ADDM functionality)
• Typical (recommended)
• All (adds additional SQL tuning information to
snapshots)
5
Secret Behind the Success of AWR and all
other self components from Oracle 10g (
ADDM , Metrics , Alerts) ?
6
AiSHwarya Rai
7
ASH ( Active Session History)
• Memory buffers in the fixed areas
• New Oracle Background Process
– MMNL – MMON Lite
• V$ACTIVE_SESSION_HISTORY
• X$ASH
• DBA_HIST_ACTIVE_SESS_HISTORY
– Based on WRH$_ACTIVE_SESSION_HISTORY
8
ASH Architecture
Circular buffer
in SGA
V$ACTIVE_SESSION_HISTORY
X$ASH
AWR
WRH$_ACTIVE_SESSION_HISTORY
Every
30 mins
or
when buffer is
full
Samples with
variable size rows
Direct-path
inserts
MMON
Lite
(MMNL)
Indexed on timeIndexed on time
9
ASH Details - General
• No installation or setup required
• Intended 30-min circular buffer in the SGA
• In memory ASH contains as much history as it can
store.
– Circular buffer not cleared when written to disk
• ASH on Disk (1 of 10 in memory samples)
• Init.ora
– STATISTICS_LEVEL = TYPICAL (Default)
• Master Switch
– _ACTIVE_SESSION_HISTORY = TRUE (Default)
10
Session 1
Ash Samples Session State
TIME
10:00:00 10:00:01 10:00:02 10:00:03 10:00:04 10:00:05
11
Session 1
Ash Samples Session State
TIME? ? ? ? ?
Sessions change a lot quicker but can
get the main picture via sampling by
sampling faster
12
Session States
IO CPU IdleWait
13
Session States
• Idle
• CPU
• Waiting
• I/O
14
Session 1
Session 2
Session 3
Session 4
Samples for all users
10:15:00 10:15:01 10:15:02 10:15:03 10:15:04 10:15:05 10:15:06 10:15:07 TIME
15
v$active_session_history
SESSION_ID NUMBER
SESSION_SERIAL# NUMBER
USER_ID NUMBER
SERVICE_HASH NUMBER
SESSION_TYPE VARCHAR2(10)
PROGRAM VARCHAR2(64)
MODULE VARCHAR2(48)
ACTION VARCHAR2(32)
CLIENT_ID VARCHAR2(64)
EVENT VARCHAR2(64)
EVENT_ID NUMBER
EVENT# NUMBER
SEQ# NUMBER
P1 NUMBER
P2 NUMBER
P3 NUMBER
WAIT_TIME NUMBER
TIME_WAITED NUMBER
CURRENT_OBJ# NUMBER
CURRENT_FILE# NUMBER
CURRENT_BLOCK# NUMBER0
SQL_ID VARCHAR2(13)
SQL_CHILD_NUMBER NUMBER
SQL_PLAN_HASH_VALUE NUMBER
SQL_OPCODE NUMBER
QC_SESSION_ID NUMBER
QC_INSTANCE_ID NUMBER
SAMPLE_ID NUMBER
SAMPLE_TIME TIMESTAMP(3)
When
Session
SQL
Wait
SESSION_STATE VARCHAR2(7)
WAIT_TIME NUMBER
State
TIME_WAITED NUMBER Duration
16
AWR Infrastructure
SGA
V$ DBA_*
ADDM
Self-tuning
component
Self-tuning
component
…
Internal clients
External clients
EM SQL*Plus …
Efficient
in-memory
statistics
collection
AWR
snapshotsMMON
17
Automatic Database Diagnostic Monitor (ADDM)
– Runs after each AWR snapshot
– Monitors the instance; detects bottlenecks
– Stores results within the AWR
Snapshots
ADDM
AWR
EM
ADDM results
18
Advisory Framework
ADDM
SQL Tuning
Advisor
SQL Access
Advisor
Memory
Space
PGA Advisor
SGA
Segment Advisor
Undo Advisor
Buffer Cache
Advisor
Library Cache
Advisor
PGA
Backup MTTR Advisor
19
AWR TOP5 Timed Events – Wait Class
20
Active Sessions in OEM
21
AWR– Top Timed Events
Top 5 Timed Events
~~~~~~~~~~~~~~~~~~
% Total
Event Waits Time (s) Ela Time
--------------------------- ------------ ----------- --------
db file sequential read 399,394,399 2,562,115 52.26
CPU time 960,825 19.60
buffer busy waits 122,302,412 540,757 11.03
PL/SQL lock timer 4,077 243,056 4.96
log file switch 188,701 187,648 3.83
(checkpoint incomplete)
22
Top 12 Waits
NAME Count % Total
1. db file sequential read 23,850.00 11.67%
2. log file sync 20,594.00 10.08%
3. db file scattered read 15,505.00 7.59%
4. latch free 11,078.00 5.42%
5. enqueue 7,732.00 3.78%
6. SQL*Net more data from client 7,510.00 3.67%
7. direct path read 5,840.00 2.86%
8. direct path write 4,868.00 2.38%
9. buffer busy waits 4,589.00 2.25%
10. SQL*Net more data to client 3,805.00 1.86%
11. log buffer space 2,990.00 1.46%
12. log file switch completion 2,878.00 1.41%
Above is over 80% of wait times reported
23
Top 36 Waits
19. write complete waits
20. library cache lock
21. SQL*Net more data from dblink
22. log file switch (checkpoint incomplete)
23. library cache load lock
24. row cache lock
25. local write wait
26. sort segment request
27. process startup
28. unread message
29. file identify
30. pipe put
31. switch logfile command
32. SQL*Net break/reset to dblink
33. log file switch (archiving needed)
34. Wait for a undo record
35. direct path write (lob)
36. undo segment extension
1. db file sequential read
2. log file sync
3. db file scattered read
4. latch free
5. enqueue
6. SQL*Net more data from client
7. direct path read
8. direct path write
9. buffer busy waits
10. SQL*Net more data to client
11. log buffer space
12. log file switch completion
13. library cache pin
14. SQL*Net break/reset to client
15. io done
16. file open
17. free buffer waits
18. db file parallel read
24
Waits
I/O
Library Cache
Locks
Redo
Buffer Cache
SQL*Net
Wait Areas
25
Wait Tree
Waits
IO
Buffer Cache
Library Cache
Lock
Redo
SQL Net
Buffer Busy
Rollback
Free lists
IO ReadCache Latches
Library Cache
Shared Pool
TX Row Lock
TX ITL Lock
HW Lock
Write IO
Read IO
Log Buffer
Log File Sync
Log File
26
OEM TOP Activity
27
OEM TOP Activity
28
OEM TOP Activity
29
Empty. Why?
Top 5 Timed Events – CPU time
30
• Because “CPU time” is not wait event. It is the
time spent on CPU to do the actual work.
Top 5 Timed Events – CPU time
31
• We had 60*60=3600 CPU Seconds to use in that interval if it is a single CPU
machine and 1 hour is the snap.
• If I tell you there were 32 CPUs, means:
60*60*32=115200 CPU seconds to use in 1 hr interval. “Assuming” only
1 Database is running on box and no other application load except Oracle
database.
• (14,659/115,200)*100 = 12.73% of Total CPU
• So we are not CPU bound. “Hopefully”
Top 5 Timed Events – CPU time
32
What Is DB Time?
DB Time
33
DB Time =
DB Wait Time +
DB CPU Time
34
Parse cpu to Parse elapsed ratio?
• If you spend 1 CPU second on CPU to parse
but total elapsed is 5 second wall clock time
then it means you are waiting on some
resources to complete the parsing.
• 100% ratio means parse CPU = Parse elapsed
time so no waits or no contention.
35
• (8879/110582)*100=8.03%
How does Oracle calculates it?
36
What does this ratio mean?
• Parse CPU to Parse Elapsd %: 8.03
• It is percentage. 8.03% means .0803
• If you divide it by 1 then 1/.0803 = 12.45
• Which means 12.45 second (wall clock time)
must be elapsed for every cpu second for
parsing. BAD
• It represents resource contention while parsing.
37
Execute to Parse Ratio?
• This a ratio which measures how many times
a statement got executed as opposed to parsed.
• if it is 99.99% then it means for 1 parse there
are 10,000 executes.
• if it is 90% then it means for 1 parse there are
10 executes.
• For OLTP, good to be near 99%, for DSS it
could be lower as “generally” all sql
statements/reports are unique.
38
• EXECUTE to PARSE = (1- parse/execute)
• 1-915,652/9,944,590 = 1-0.092 = 0.9079
• For percentage => .9079*100 = 90.79%
How does Oracle calculates it?
39
• EXECUTE to PARSE %= 90.79
• 1-parse/execute = .9079
• Parse/execute = 1-.9079
• Parse/execute = 0.0921
• Parse/execute = 921/10000
• For parse = 1 execute = 10.85
• So 1 parse for every ~11 executes.
What does this ratio mean?
40
?
41
Thank You
www.linkedin.com/in/satyendra
@pasalapudi
42
Wait Problem Potential Fix
Enqueue - ST Use LMT’s or pre-allocate large extents
Enqueue - HW Pre-allocate extents above HW (high
water mark.)
Enqueue – TX Increase initrans and/or maxtrans (TX4)
on (transaction) the table or index. Fix
locking issues if TX6. Bitmap (TX4) &
Duplicates in Index (TX4).
Enqueue - TM Index foreign keys; Check application
(trans. mgmt.) locking of tables. DML Locks.
43 43
Wait Problem Potential Fix
Sequential Read Indicates many index reads – tune the
code (especially joins); Faster I/O
Scattered Read Indicates many full table scans – tune
the code; cache small tables; Faster I/O
Free Buffer Increase the DB_CACHE_SIZE;
shorten the checkpoint; tune the code to
get less dirty blocks, faster I/O,
use multiple DBWR’s
Buffer Busy Segment Header – Add freelists (if inserts)
or freelist groups (esp. RAC). Use ASSM.
44 44
Wait Problem Potential Fix
Buffer Busy Data Block – Separate ‘hot’ data; potentially
use reverse key indexes; fix queries to
reduce the blocks popularity, use
smaller blocks, I/O, Increase initrans
and/or maxtrans (this one’s debatable)
Reduce records per block.
Buffer Busy Undo Header – Add rollback segments
or increase size of segment area (auto undo)
Buffer Busy Undo block – Commit more (not too
much) Larger rollback segments/area.
Try to fix the SQL.
Ad

More Related Content

What's hot (20)

Performance Tuning With Oracle ASH and AWR. Part 1 How And What
Performance Tuning With Oracle ASH and AWR. Part 1 How And WhatPerformance Tuning With Oracle ASH and AWR. Part 1 How And What
Performance Tuning With Oracle ASH and AWR. Part 1 How And What
udaymoogala
 
Analyzing awr report
Analyzing awr reportAnalyzing awr report
Analyzing awr report
satish Gaddipati
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
Enkitec
 
Your tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
Your tuning arsenal: AWR, ADDM, ASH, Metrics and AdvisorsYour tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
Your tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
John Kanagaraj
 
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAsOracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Zohar Elkayam
 
What to Expect From Oracle database 19c
What to Expect From Oracle database 19cWhat to Expect From Oracle database 19c
What to Expect From Oracle database 19c
Maria Colgan
 
AWR Ambiguity: Performance reasoning when the numbers don't add up
AWR Ambiguity: Performance reasoning when the numbers don't add upAWR Ambiguity: Performance reasoning when the numbers don't add up
AWR Ambiguity: Performance reasoning when the numbers don't add up
John Beresniewicz
 
AWR & ASH Analysis
AWR & ASH AnalysisAWR & ASH Analysis
AWR & ASH Analysis
aioughydchapter
 
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Aaron Shilo
 
SQLd360
SQLd360SQLd360
SQLd360
Mauro Pagano
 
Oracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention TroubleshootingOracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention Troubleshooting
Tanel Poder
 
Oracle Performance Tools of the Trade
Oracle Performance Tools of the TradeOracle Performance Tools of the Trade
Oracle Performance Tools of the Trade
Carlos Sierra
 
Same plan different performance
Same plan different performanceSame plan different performance
Same plan different performance
Mauro Pagano
 
Chasing the optimizer
Chasing the optimizerChasing the optimizer
Chasing the optimizer
Mauro Pagano
 
Understanding oracle rac internals part 1 - slides
Understanding oracle rac internals   part 1 - slidesUnderstanding oracle rac internals   part 1 - slides
Understanding oracle rac internals part 1 - slides
Mohamed Farouk
 
Ash and awr deep dive hotsos
Ash and awr deep dive hotsosAsh and awr deep dive hotsos
Ash and awr deep dive hotsos
Kellyn Pot'Vin-Gorman
 
Oracle RAC 19c: Best Practices and Secret Internals
Oracle RAC 19c: Best Practices and Secret InternalsOracle RAC 19c: Best Practices and Secret Internals
Oracle RAC 19c: Best Practices and Secret Internals
Anil Nair
 
Understanding SQL Trace, TKPROF and Execution Plan for beginners
Understanding SQL Trace, TKPROF and Execution Plan for beginnersUnderstanding SQL Trace, TKPROF and Execution Plan for beginners
Understanding SQL Trace, TKPROF and Execution Plan for beginners
Carlos Sierra
 
Oracle Database SQL Tuning Concept
Oracle Database SQL Tuning ConceptOracle Database SQL Tuning Concept
Oracle Database SQL Tuning Concept
Chien Chung Shen
 
Oracle database performance tuning
Oracle database performance tuningOracle database performance tuning
Oracle database performance tuning
Abishek V S
 
Performance Tuning With Oracle ASH and AWR. Part 1 How And What
Performance Tuning With Oracle ASH and AWR. Part 1 How And WhatPerformance Tuning With Oracle ASH and AWR. Part 1 How And What
Performance Tuning With Oracle ASH and AWR. Part 1 How And What
udaymoogala
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
Enkitec
 
Your tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
Your tuning arsenal: AWR, ADDM, ASH, Metrics and AdvisorsYour tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
Your tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors
John Kanagaraj
 
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAsOracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Oracle Database Performance Tuning Advanced Features and Best Practices for DBAs
Zohar Elkayam
 
What to Expect From Oracle database 19c
What to Expect From Oracle database 19cWhat to Expect From Oracle database 19c
What to Expect From Oracle database 19c
Maria Colgan
 
AWR Ambiguity: Performance reasoning when the numbers don't add up
AWR Ambiguity: Performance reasoning when the numbers don't add upAWR Ambiguity: Performance reasoning when the numbers don't add up
AWR Ambiguity: Performance reasoning when the numbers don't add up
John Beresniewicz
 
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Exploring Oracle Database Performance Tuning Best Practices for DBAs and Deve...
Aaron Shilo
 
Oracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention TroubleshootingOracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention Troubleshooting
Tanel Poder
 
Oracle Performance Tools of the Trade
Oracle Performance Tools of the TradeOracle Performance Tools of the Trade
Oracle Performance Tools of the Trade
Carlos Sierra
 
Same plan different performance
Same plan different performanceSame plan different performance
Same plan different performance
Mauro Pagano
 
Chasing the optimizer
Chasing the optimizerChasing the optimizer
Chasing the optimizer
Mauro Pagano
 
Understanding oracle rac internals part 1 - slides
Understanding oracle rac internals   part 1 - slidesUnderstanding oracle rac internals   part 1 - slides
Understanding oracle rac internals part 1 - slides
Mohamed Farouk
 
Oracle RAC 19c: Best Practices and Secret Internals
Oracle RAC 19c: Best Practices and Secret InternalsOracle RAC 19c: Best Practices and Secret Internals
Oracle RAC 19c: Best Practices and Secret Internals
Anil Nair
 
Understanding SQL Trace, TKPROF and Execution Plan for beginners
Understanding SQL Trace, TKPROF and Execution Plan for beginnersUnderstanding SQL Trace, TKPROF and Execution Plan for beginners
Understanding SQL Trace, TKPROF and Execution Plan for beginners
Carlos Sierra
 
Oracle Database SQL Tuning Concept
Oracle Database SQL Tuning ConceptOracle Database SQL Tuning Concept
Oracle Database SQL Tuning Concept
Chien Chung Shen
 
Oracle database performance tuning
Oracle database performance tuningOracle database performance tuning
Oracle database performance tuning
Abishek V S
 

Similar to Analyzing and Interpreting AWR (20)

Performance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Performance Scenario: Diagnosing and resolving sudden slow down on two node RACPerformance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Performance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Kristofferson A
 
Awr + 12c performance tuning
Awr + 12c performance tuningAwr + 12c performance tuning
Awr + 12c performance tuning
AiougVizagChapter
 
ASH and AWR on DB12c
ASH and AWR on DB12cASH and AWR on DB12c
ASH and AWR on DB12c
Kellyn Pot'Vin-Gorman
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
Carlos Sierra
 
End-to-end Troubleshooting Checklist for Microsoft SQL Server
End-to-end Troubleshooting Checklist for Microsoft SQL ServerEnd-to-end Troubleshooting Checklist for Microsoft SQL Server
End-to-end Troubleshooting Checklist for Microsoft SQL Server
Kevin Kline
 
Oracle Performance Tuning DE(v1.2)-part2.ppt
Oracle Performance Tuning DE(v1.2)-part2.pptOracle Performance Tuning DE(v1.2)-part2.ppt
Oracle Performance Tuning DE(v1.2)-part2.ppt
VenugopalChattu1
 
Analyze database system using a 3 d method
Analyze database system using a 3 d methodAnalyze database system using a 3 d method
Analyze database system using a 3 d method
Ajith Narayanan
 
Oracle Result Cache deep dive
Oracle Result Cache deep diveOracle Result Cache deep dive
Oracle Result Cache deep dive
Alexander Tokarev
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Oracle result cache highload 2017
Oracle result cache highload 2017Oracle result cache highload 2017
Oracle result cache highload 2017
Alexander Tokarev
 
ASH Archit ecture and Advanced Usage.pdf
ASH Archit ecture and Advanced Usage.pdfASH Archit ecture and Advanced Usage.pdf
ASH Archit ecture and Advanced Usage.pdf
tricantino1973
 
Oracle Database : Addressing a performance issue the drilldown approach
Oracle Database : Addressing a performance issue the drilldown approachOracle Database : Addressing a performance issue the drilldown approach
Oracle Database : Addressing a performance issue the drilldown approach
Laurent Leturgez
 
How should I monitor my idaa
How should I monitor my idaaHow should I monitor my idaa
How should I monitor my idaa
Cuneyt Goksu
 
Database Core performance principles
Database Core performance principlesDatabase Core performance principles
Database Core performance principles
Koppelaars
 
OGG Architecture Performance
OGG Architecture PerformanceOGG Architecture Performance
OGG Architecture Performance
Enkitec
 
Oracle GoldenGate Architecture Performance
Oracle GoldenGate Architecture PerformanceOracle GoldenGate Architecture Performance
Oracle GoldenGate Architecture Performance
Enkitec
 
unix_linux_ORATOP_TechDays2016_presentations
unix_linux_ORATOP_TechDays2016_presentationsunix_linux_ORATOP_TechDays2016_presentations
unix_linux_ORATOP_TechDays2016_presentations
garosgaros
 
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Bobby Curtis
 
Oracle Database In-Memory Option in Action
Oracle Database In-Memory Option in ActionOracle Database In-Memory Option in Action
Oracle Database In-Memory Option in Action
Tanel Poder
 
In Memory Database In Action by Tanel Poder and Kerry Osborne
In Memory Database In Action by Tanel Poder and Kerry OsborneIn Memory Database In Action by Tanel Poder and Kerry Osborne
In Memory Database In Action by Tanel Poder and Kerry Osborne
Enkitec
 
Performance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Performance Scenario: Diagnosing and resolving sudden slow down on two node RACPerformance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Performance Scenario: Diagnosing and resolving sudden slow down on two node RAC
Kristofferson A
 
Awr + 12c performance tuning
Awr + 12c performance tuningAwr + 12c performance tuning
Awr + 12c performance tuning
AiougVizagChapter
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
Carlos Sierra
 
End-to-end Troubleshooting Checklist for Microsoft SQL Server
End-to-end Troubleshooting Checklist for Microsoft SQL ServerEnd-to-end Troubleshooting Checklist for Microsoft SQL Server
End-to-end Troubleshooting Checklist for Microsoft SQL Server
Kevin Kline
 
Oracle Performance Tuning DE(v1.2)-part2.ppt
Oracle Performance Tuning DE(v1.2)-part2.pptOracle Performance Tuning DE(v1.2)-part2.ppt
Oracle Performance Tuning DE(v1.2)-part2.ppt
VenugopalChattu1
 
Analyze database system using a 3 d method
Analyze database system using a 3 d methodAnalyze database system using a 3 d method
Analyze database system using a 3 d method
Ajith Narayanan
 
Oracle Result Cache deep dive
Oracle Result Cache deep diveOracle Result Cache deep dive
Oracle Result Cache deep dive
Alexander Tokarev
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Oracle result cache highload 2017
Oracle result cache highload 2017Oracle result cache highload 2017
Oracle result cache highload 2017
Alexander Tokarev
 
ASH Archit ecture and Advanced Usage.pdf
ASH Archit ecture and Advanced Usage.pdfASH Archit ecture and Advanced Usage.pdf
ASH Archit ecture and Advanced Usage.pdf
tricantino1973
 
Oracle Database : Addressing a performance issue the drilldown approach
Oracle Database : Addressing a performance issue the drilldown approachOracle Database : Addressing a performance issue the drilldown approach
Oracle Database : Addressing a performance issue the drilldown approach
Laurent Leturgez
 
How should I monitor my idaa
How should I monitor my idaaHow should I monitor my idaa
How should I monitor my idaa
Cuneyt Goksu
 
Database Core performance principles
Database Core performance principlesDatabase Core performance principles
Database Core performance principles
Koppelaars
 
OGG Architecture Performance
OGG Architecture PerformanceOGG Architecture Performance
OGG Architecture Performance
Enkitec
 
Oracle GoldenGate Architecture Performance
Oracle GoldenGate Architecture PerformanceOracle GoldenGate Architecture Performance
Oracle GoldenGate Architecture Performance
Enkitec
 
unix_linux_ORATOP_TechDays2016_presentations
unix_linux_ORATOP_TechDays2016_presentationsunix_linux_ORATOP_TechDays2016_presentations
unix_linux_ORATOP_TechDays2016_presentations
garosgaros
 
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Oracle GoldenGate Presentation from OTN Virtual Technology Summit - 7/9/14 (PDF)
Bobby Curtis
 
Oracle Database In-Memory Option in Action
Oracle Database In-Memory Option in ActionOracle Database In-Memory Option in Action
Oracle Database In-Memory Option in Action
Tanel Poder
 
In Memory Database In Action by Tanel Poder and Kerry Osborne
In Memory Database In Action by Tanel Poder and Kerry OsborneIn Memory Database In Action by Tanel Poder and Kerry Osborne
In Memory Database In Action by Tanel Poder and Kerry Osborne
Enkitec
 
Ad

More from pasalapudi (8)

Multiple ldap implementation with ebs using oid
Multiple ldap implementation with ebs using oidMultiple ldap implementation with ebs using oid
Multiple ldap implementation with ebs using oid
pasalapudi
 
Oracle E-Business Suite On Oracle Cloud
Oracle E-Business Suite On Oracle CloudOracle E-Business Suite On Oracle Cloud
Oracle E-Business Suite On Oracle Cloud
pasalapudi
 
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
pasalapudi
 
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov1712.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
pasalapudi
 
Online patching ebs122_aioug_appsdba_nov2017
Online patching ebs122_aioug_appsdba_nov2017Online patching ebs122_aioug_appsdba_nov2017
Online patching ebs122_aioug_appsdba_nov2017
pasalapudi
 
Aioug sangam13 v3
Aioug sangam13 v3Aioug sangam13 v3
Aioug sangam13 v3
pasalapudi
 
Oracle database 12c intro
Oracle database 12c introOracle database 12c intro
Oracle database 12c intro
pasalapudi
 
DBA to Data Scientist
DBA to Data ScientistDBA to Data Scientist
DBA to Data Scientist
pasalapudi
 
Multiple ldap implementation with ebs using oid
Multiple ldap implementation with ebs using oidMultiple ldap implementation with ebs using oid
Multiple ldap implementation with ebs using oid
pasalapudi
 
Oracle E-Business Suite On Oracle Cloud
Oracle E-Business Suite On Oracle CloudOracle E-Business Suite On Oracle Cloud
Oracle E-Business Suite On Oracle Cloud
pasalapudi
 
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
Aioug2017 deploying-ebs-on-prem-and-on-oracle-cloud v2
pasalapudi
 
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov1712.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
12.2 secure configureconsole_adop_changes_aioug_appsdba_nov17
pasalapudi
 
Online patching ebs122_aioug_appsdba_nov2017
Online patching ebs122_aioug_appsdba_nov2017Online patching ebs122_aioug_appsdba_nov2017
Online patching ebs122_aioug_appsdba_nov2017
pasalapudi
 
Aioug sangam13 v3
Aioug sangam13 v3Aioug sangam13 v3
Aioug sangam13 v3
pasalapudi
 
Oracle database 12c intro
Oracle database 12c introOracle database 12c intro
Oracle database 12c intro
pasalapudi
 
DBA to Data Scientist
DBA to Data ScientistDBA to Data Scientist
DBA to Data Scientist
pasalapudi
 
Ad

Recently uploaded (20)

What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 

Analyzing and Interpreting AWR

  • 1. 1 Analyzing and Interpreting AWR Report by Satyendra Pasalapudi @pasalapudi
  • 2. 2 Agenda • AWR Overview • Why AWR is powerful than Statspack? • Top 5 Timed Events • Oracle Time Model, Wait Classes, & Metrics • Interpreting AWR
  • 3. 3 Automatic Workload Repository (AWR) – Built-in repository of performance information ( Light Weight) – Snapshots of database metrics taken every 60 minutes and retained for 7 days – Foundation for all self-management functions – Data to find root cause and suggest remedies. MMON In-memory statistics Snapshots AWR SGA 60 minutes
  • 4. 4 Managing the AWR – Retention period • The default is 7 days • Consider storage needs – Collection interval • The default is 60 minutes • Consider storage needs and performance impact – Collection level • Basic (disables most of ADDM functionality) • Typical (recommended) • All (adds additional SQL tuning information to snapshots)
  • 5. 5 Secret Behind the Success of AWR and all other self components from Oracle 10g ( ADDM , Metrics , Alerts) ?
  • 7. 7 ASH ( Active Session History) • Memory buffers in the fixed areas • New Oracle Background Process – MMNL – MMON Lite • V$ACTIVE_SESSION_HISTORY • X$ASH • DBA_HIST_ACTIVE_SESS_HISTORY – Based on WRH$_ACTIVE_SESSION_HISTORY
  • 8. 8 ASH Architecture Circular buffer in SGA V$ACTIVE_SESSION_HISTORY X$ASH AWR WRH$_ACTIVE_SESSION_HISTORY Every 30 mins or when buffer is full Samples with variable size rows Direct-path inserts MMON Lite (MMNL) Indexed on timeIndexed on time
  • 9. 9 ASH Details - General • No installation or setup required • Intended 30-min circular buffer in the SGA • In memory ASH contains as much history as it can store. – Circular buffer not cleared when written to disk • ASH on Disk (1 of 10 in memory samples) • Init.ora – STATISTICS_LEVEL = TYPICAL (Default) • Master Switch – _ACTIVE_SESSION_HISTORY = TRUE (Default)
  • 10. 10 Session 1 Ash Samples Session State TIME 10:00:00 10:00:01 10:00:02 10:00:03 10:00:04 10:00:05
  • 11. 11 Session 1 Ash Samples Session State TIME? ? ? ? ? Sessions change a lot quicker but can get the main picture via sampling by sampling faster
  • 13. 13 Session States • Idle • CPU • Waiting • I/O
  • 14. 14 Session 1 Session 2 Session 3 Session 4 Samples for all users 10:15:00 10:15:01 10:15:02 10:15:03 10:15:04 10:15:05 10:15:06 10:15:07 TIME
  • 15. 15 v$active_session_history SESSION_ID NUMBER SESSION_SERIAL# NUMBER USER_ID NUMBER SERVICE_HASH NUMBER SESSION_TYPE VARCHAR2(10) PROGRAM VARCHAR2(64) MODULE VARCHAR2(48) ACTION VARCHAR2(32) CLIENT_ID VARCHAR2(64) EVENT VARCHAR2(64) EVENT_ID NUMBER EVENT# NUMBER SEQ# NUMBER P1 NUMBER P2 NUMBER P3 NUMBER WAIT_TIME NUMBER TIME_WAITED NUMBER CURRENT_OBJ# NUMBER CURRENT_FILE# NUMBER CURRENT_BLOCK# NUMBER0 SQL_ID VARCHAR2(13) SQL_CHILD_NUMBER NUMBER SQL_PLAN_HASH_VALUE NUMBER SQL_OPCODE NUMBER QC_SESSION_ID NUMBER QC_INSTANCE_ID NUMBER SAMPLE_ID NUMBER SAMPLE_TIME TIMESTAMP(3) When Session SQL Wait SESSION_STATE VARCHAR2(7) WAIT_TIME NUMBER State TIME_WAITED NUMBER Duration
  • 16. 16 AWR Infrastructure SGA V$ DBA_* ADDM Self-tuning component Self-tuning component … Internal clients External clients EM SQL*Plus … Efficient in-memory statistics collection AWR snapshotsMMON
  • 17. 17 Automatic Database Diagnostic Monitor (ADDM) – Runs after each AWR snapshot – Monitors the instance; detects bottlenecks – Stores results within the AWR Snapshots ADDM AWR EM ADDM results
  • 18. 18 Advisory Framework ADDM SQL Tuning Advisor SQL Access Advisor Memory Space PGA Advisor SGA Segment Advisor Undo Advisor Buffer Cache Advisor Library Cache Advisor PGA Backup MTTR Advisor
  • 19. 19 AWR TOP5 Timed Events – Wait Class
  • 21. 21 AWR– Top Timed Events Top 5 Timed Events ~~~~~~~~~~~~~~~~~~ % Total Event Waits Time (s) Ela Time --------------------------- ------------ ----------- -------- db file sequential read 399,394,399 2,562,115 52.26 CPU time 960,825 19.60 buffer busy waits 122,302,412 540,757 11.03 PL/SQL lock timer 4,077 243,056 4.96 log file switch 188,701 187,648 3.83 (checkpoint incomplete)
  • 22. 22 Top 12 Waits NAME Count % Total 1. db file sequential read 23,850.00 11.67% 2. log file sync 20,594.00 10.08% 3. db file scattered read 15,505.00 7.59% 4. latch free 11,078.00 5.42% 5. enqueue 7,732.00 3.78% 6. SQL*Net more data from client 7,510.00 3.67% 7. direct path read 5,840.00 2.86% 8. direct path write 4,868.00 2.38% 9. buffer busy waits 4,589.00 2.25% 10. SQL*Net more data to client 3,805.00 1.86% 11. log buffer space 2,990.00 1.46% 12. log file switch completion 2,878.00 1.41% Above is over 80% of wait times reported
  • 23. 23 Top 36 Waits 19. write complete waits 20. library cache lock 21. SQL*Net more data from dblink 22. log file switch (checkpoint incomplete) 23. library cache load lock 24. row cache lock 25. local write wait 26. sort segment request 27. process startup 28. unread message 29. file identify 30. pipe put 31. switch logfile command 32. SQL*Net break/reset to dblink 33. log file switch (archiving needed) 34. Wait for a undo record 35. direct path write (lob) 36. undo segment extension 1. db file sequential read 2. log file sync 3. db file scattered read 4. latch free 5. enqueue 6. SQL*Net more data from client 7. direct path read 8. direct path write 9. buffer busy waits 10. SQL*Net more data to client 11. log buffer space 12. log file switch completion 13. library cache pin 14. SQL*Net break/reset to client 15. io done 16. file open 17. free buffer waits 18. db file parallel read
  • 25. 25 Wait Tree Waits IO Buffer Cache Library Cache Lock Redo SQL Net Buffer Busy Rollback Free lists IO ReadCache Latches Library Cache Shared Pool TX Row Lock TX ITL Lock HW Lock Write IO Read IO Log Buffer Log File Sync Log File
  • 29. 29 Empty. Why? Top 5 Timed Events – CPU time
  • 30. 30 • Because “CPU time” is not wait event. It is the time spent on CPU to do the actual work. Top 5 Timed Events – CPU time
  • 31. 31 • We had 60*60=3600 CPU Seconds to use in that interval if it is a single CPU machine and 1 hour is the snap. • If I tell you there were 32 CPUs, means: 60*60*32=115200 CPU seconds to use in 1 hr interval. “Assuming” only 1 Database is running on box and no other application load except Oracle database. • (14,659/115,200)*100 = 12.73% of Total CPU • So we are not CPU bound. “Hopefully” Top 5 Timed Events – CPU time
  • 32. 32 What Is DB Time? DB Time
  • 33. 33 DB Time = DB Wait Time + DB CPU Time
  • 34. 34 Parse cpu to Parse elapsed ratio? • If you spend 1 CPU second on CPU to parse but total elapsed is 5 second wall clock time then it means you are waiting on some resources to complete the parsing. • 100% ratio means parse CPU = Parse elapsed time so no waits or no contention.
  • 36. 36 What does this ratio mean? • Parse CPU to Parse Elapsd %: 8.03 • It is percentage. 8.03% means .0803 • If you divide it by 1 then 1/.0803 = 12.45 • Which means 12.45 second (wall clock time) must be elapsed for every cpu second for parsing. BAD • It represents resource contention while parsing.
  • 37. 37 Execute to Parse Ratio? • This a ratio which measures how many times a statement got executed as opposed to parsed. • if it is 99.99% then it means for 1 parse there are 10,000 executes. • if it is 90% then it means for 1 parse there are 10 executes. • For OLTP, good to be near 99%, for DSS it could be lower as “generally” all sql statements/reports are unique.
  • 38. 38 • EXECUTE to PARSE = (1- parse/execute) • 1-915,652/9,944,590 = 1-0.092 = 0.9079 • For percentage => .9079*100 = 90.79% How does Oracle calculates it?
  • 39. 39 • EXECUTE to PARSE %= 90.79 • 1-parse/execute = .9079 • Parse/execute = 1-.9079 • Parse/execute = 0.0921 • Parse/execute = 921/10000 • For parse = 1 execute = 10.85 • So 1 parse for every ~11 executes. What does this ratio mean?
  • 40. 40 ?
  • 42. 42 Wait Problem Potential Fix Enqueue - ST Use LMT’s or pre-allocate large extents Enqueue - HW Pre-allocate extents above HW (high water mark.) Enqueue – TX Increase initrans and/or maxtrans (TX4) on (transaction) the table or index. Fix locking issues if TX6. Bitmap (TX4) & Duplicates in Index (TX4). Enqueue - TM Index foreign keys; Check application (trans. mgmt.) locking of tables. DML Locks.
  • 43. 43 43 Wait Problem Potential Fix Sequential Read Indicates many index reads – tune the code (especially joins); Faster I/O Scattered Read Indicates many full table scans – tune the code; cache small tables; Faster I/O Free Buffer Increase the DB_CACHE_SIZE; shorten the checkpoint; tune the code to get less dirty blocks, faster I/O, use multiple DBWR’s Buffer Busy Segment Header – Add freelists (if inserts) or freelist groups (esp. RAC). Use ASSM.
  • 44. 44 44 Wait Problem Potential Fix Buffer Busy Data Block – Separate ‘hot’ data; potentially use reverse key indexes; fix queries to reduce the blocks popularity, use smaller blocks, I/O, Increase initrans and/or maxtrans (this one’s debatable) Reduce records per block. Buffer Busy Undo Header – Add rollback segments or increase size of segment area (auto undo) Buffer Busy Undo block – Commit more (not too much) Larger rollback segments/area. Try to fix the SQL.