SlideShare a Scribd company logo
A FAST CLUSTERING-BASED FEATURE SUBSET SELECTION ALGORITHM FOR
HIGH-DIMENSIONAL DATA
ABSTRACT:
Feature selection involves identifying a subset of the most useful features that produces
compatible results as the original entire set of features. A feature selection algorithm may be
evaluated from both the efficiency and effectiveness points of view. While the efficiency
concerns the time required to find a subset of features, the effectiveness is related to the quality
of the subset of features. Based on these criteria, a fast clustering-based feature selection
algorithm (FAST) is proposed and experimentally evaluated in this paper.
The FAST algorithm works in two steps.
In the first step, features are divided into clusters by using graph-theoretic clustering methods.
In the second step, the most representative feature that is strongly related to target classes is
selected from each cluster to form a subset of features.
Features in different clusters are relatively independent; the clustering-based strategy of FAST
has a high probability of producing a subset of useful and independent features. To ensure the
efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method.
The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical
study. Extensive experiments are carried out to compare FAST and several representative feature
selection algorithms results, on 35 publicly available real-world high-dimensional image,
microarray, and text data, demonstrate that the FAST not only produces smaller subsets of
features but also improves the performances of the four types of classifiers.
ECWAY TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
OUR OFFICES @ CHENNAI / TRICHY / KARUR / ERODE / MADURAI / SALEM / COIMBATORE
CELL: +91 98949 17187, +91 875487 2111 / 3111 / 4111 / 5111 / 6111
VISIT: www.ecwayprojects.com MAIL TO: ecwaytechnologies@gmail.com
Ad

More Related Content

What's hot (16)

Neural Network Presentation
Neural Network PresentationNeural Network Presentation
Neural Network Presentation
Omoye
 
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Mahmoud Alfarra
 
Collaborative Filtering Survey
Collaborative Filtering SurveyCollaborative Filtering Survey
Collaborative Filtering Survey
mobilizer1000
 
Ppt manqing
Ppt manqingPpt manqing
Ppt manqing
Xiang Zhang
 
ICSE2018-Poster-Bug-Localization
ICSE2018-Poster-Bug-LocalizationICSE2018-Poster-Bug-Localization
ICSE2018-Poster-Bug-Localization
Masud Rahman
 
D0931621
D0931621D0931621
D0931621
IOSR Journals
 
A value added predictive defect type distribution model
A value added predictive defect type distribution modelA value added predictive defect type distribution model
A value added predictive defect type distribution model
UmeshchandraYadav5
 
Poster: ICPR 2008
Poster: ICPR 2008Poster: ICPR 2008
Poster: ICPR 2008
Mahfuzul Haque
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapesIEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEEBEBTECHSTUDENTPROJECTS
 
Cloud migration research a systematic review
Cloud migration research a systematic reviewCloud migration research a systematic review
Cloud migration research a systematic review
Nexgen Technology
 
Matlab reversible watermarking based on invariant image classification and d...
Matlab  reversible watermarking based on invariant image classification and d...Matlab  reversible watermarking based on invariant image classification and d...
Matlab reversible watermarking based on invariant image classification and d...
Ecway Technologies
 
Different approaches for controlling Boolean networks
Different approaches for controlling Boolean networksDifferent approaches for controlling Boolean networks
Different approaches for controlling Boolean networks
CeliaBianeFourati
 
One–day wave forecasts based on artificial neural networks
One–day wave forecasts based on artificial neural networksOne–day wave forecasts based on artificial neural networks
One–day wave forecasts based on artificial neural networks
Jonathan D'Cruz
 
New Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
New Rough Set Attribute Reduction Algorithm based on Grey Wolf OptimizationNew Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
New Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
Aboul Ella Hassanien
 
Integrative information management for systems biology
Integrative information management for systems biologyIntegrative information management for systems biology
Integrative information management for systems biology
Neil Swainston
 
Java region-based foldings in process discovery
Java  region-based foldings in process discoveryJava  region-based foldings in process discovery
Java region-based foldings in process discovery
Ecway Technologies
 
Neural Network Presentation
Neural Network PresentationNeural Network Presentation
Neural Network Presentation
Omoye
 
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Graph-Based Technique for Extracting Keyphrases In a Single-Document (GTEK)
Mahmoud Alfarra
 
Collaborative Filtering Survey
Collaborative Filtering SurveyCollaborative Filtering Survey
Collaborative Filtering Survey
mobilizer1000
 
ICSE2018-Poster-Bug-Localization
ICSE2018-Poster-Bug-LocalizationICSE2018-Poster-Bug-Localization
ICSE2018-Poster-Bug-Localization
Masud Rahman
 
A value added predictive defect type distribution model
A value added predictive defect type distribution modelA value added predictive defect type distribution model
A value added predictive defect type distribution model
UmeshchandraYadav5
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapesIEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEEBEBTECHSTUDENTPROJECTS
 
Cloud migration research a systematic review
Cloud migration research a systematic reviewCloud migration research a systematic review
Cloud migration research a systematic review
Nexgen Technology
 
Matlab reversible watermarking based on invariant image classification and d...
Matlab  reversible watermarking based on invariant image classification and d...Matlab  reversible watermarking based on invariant image classification and d...
Matlab reversible watermarking based on invariant image classification and d...
Ecway Technologies
 
Different approaches for controlling Boolean networks
Different approaches for controlling Boolean networksDifferent approaches for controlling Boolean networks
Different approaches for controlling Boolean networks
CeliaBianeFourati
 
One–day wave forecasts based on artificial neural networks
One–day wave forecasts based on artificial neural networksOne–day wave forecasts based on artificial neural networks
One–day wave forecasts based on artificial neural networks
Jonathan D'Cruz
 
New Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
New Rough Set Attribute Reduction Algorithm based on Grey Wolf OptimizationNew Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
New Rough Set Attribute Reduction Algorithm based on Grey Wolf Optimization
Aboul Ella Hassanien
 
Integrative information management for systems biology
Integrative information management for systems biologyIntegrative information management for systems biology
Integrative information management for systems biology
Neil Swainston
 
Java region-based foldings in process discovery
Java  region-based foldings in process discoveryJava  region-based foldings in process discovery
Java region-based foldings in process discovery
Ecway Technologies
 

Similar to Android a fast clustering-based feature subset selection algorithm for high-dimensional data (20)

JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
IEEEGLOBALSOFTTECHNOLOGIES
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
IEEEFINALYEARPROJECTS
 
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
IEEEGLOBALSOFTTECHNOLOGIES
 
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEEFINALYEARSTUDENTPROJECTS
 
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
IEEEMEMTECHSTUDENTSPROJECTS
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
IEEEFINALYEARPROJECTS
 
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
IEEEGLOBALSOFTTECHNOLOGIES
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
JPINFOTECH JAYAPRAKASH
 
Iaetsd an efficient and large data base using subset selection algorithm
Iaetsd an efficient and large data base using subset selection algorithmIaetsd an efficient and large data base using subset selection algorithm
Iaetsd an efficient and large data base using subset selection algorithm
Iaetsd Iaetsd
 
Iaetsd an enhanced feature selection for
Iaetsd an enhanced feature selection forIaetsd an enhanced feature selection for
Iaetsd an enhanced feature selection for
Iaetsd Iaetsd
 
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
C LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHmC LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHm
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
IJCI JOURNAL
 
M43016571
M43016571M43016571
M43016571
IJERA Editor
 
Feature Selection Algorithm for Supervised and Semisupervised Clustering
Feature Selection Algorithm for Supervised and Semisupervised ClusteringFeature Selection Algorithm for Supervised and Semisupervised Clustering
Feature Selection Algorithm for Supervised and Semisupervised Clustering
Editor IJCATR
 
Network Based Intrusion Detection System using Filter Based Feature Selection...
Network Based Intrusion Detection System using Filter Based Feature Selection...Network Based Intrusion Detection System using Filter Based Feature Selection...
Network Based Intrusion Detection System using Filter Based Feature Selection...
IRJET Journal
 
Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Unsupervised Feature Selection Based on the Distribution of Features Attribut...Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Waqas Tariq
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
theijes
 
SEO PROCESS
SEO PROCESSSEO PROCESS
SEO PROCESS
Mohan Balakrishna
 
33365_Poster for firefly optimization algorithm
33365_Poster for firefly optimization algorithm33365_Poster for firefly optimization algorithm
33365_Poster for firefly optimization algorithm
crisersumani
 
Optimization Technique for Feature Selection and Classification Using Support...
Optimization Technique for Feature Selection and Classification Using Support...Optimization Technique for Feature Selection and Classification Using Support...
Optimization Technique for Feature Selection and Classification Using Support...
IJTET Journal
 
JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
JAVA 2013 IEEE PROJECT A fast clustering based feature subset selection algor...
IEEEGLOBALSOFTTECHNOLOGIES
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
IEEEFINALYEARPROJECTS
 
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subset ...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT A fast clustering based feature subse...
IEEEGLOBALSOFTTECHNOLOGIES
 
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
IEEEFINALYEARSTUDENTPROJECTS
 
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
2014 IEEE JAVA DATA MINING PROJECT A fast clustering based feature subset sel...
IEEEMEMTECHSTUDENTSPROJECTS
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
IEEEFINALYEARPROJECTS
 
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
JAVA 2013 IEEE DATAMINING PROJECT A fast clustering based feature subset sele...
IEEEGLOBALSOFTTECHNOLOGIES
 
A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...A fast clustering based feature subset selection algorithm for high-dimension...
A fast clustering based feature subset selection algorithm for high-dimension...
JPINFOTECH JAYAPRAKASH
 
Iaetsd an efficient and large data base using subset selection algorithm
Iaetsd an efficient and large data base using subset selection algorithmIaetsd an efficient and large data base using subset selection algorithm
Iaetsd an efficient and large data base using subset selection algorithm
Iaetsd Iaetsd
 
Iaetsd an enhanced feature selection for
Iaetsd an enhanced feature selection forIaetsd an enhanced feature selection for
Iaetsd an enhanced feature selection for
Iaetsd Iaetsd
 
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
C LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHmC LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHm
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
IJCI JOURNAL
 
Feature Selection Algorithm for Supervised and Semisupervised Clustering
Feature Selection Algorithm for Supervised and Semisupervised ClusteringFeature Selection Algorithm for Supervised and Semisupervised Clustering
Feature Selection Algorithm for Supervised and Semisupervised Clustering
Editor IJCATR
 
Network Based Intrusion Detection System using Filter Based Feature Selection...
Network Based Intrusion Detection System using Filter Based Feature Selection...Network Based Intrusion Detection System using Filter Based Feature Selection...
Network Based Intrusion Detection System using Filter Based Feature Selection...
IRJET Journal
 
Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Unsupervised Feature Selection Based on the Distribution of Features Attribut...Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Unsupervised Feature Selection Based on the Distribution of Features Attribut...
Waqas Tariq
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
theijes
 
33365_Poster for firefly optimization algorithm
33365_Poster for firefly optimization algorithm33365_Poster for firefly optimization algorithm
33365_Poster for firefly optimization algorithm
crisersumani
 
Optimization Technique for Feature Selection and Classification Using Support...
Optimization Technique for Feature Selection and Classification Using Support...Optimization Technique for Feature Selection and Classification Using Support...
Optimization Technique for Feature Selection and Classification Using Support...
IJTET Journal
 
Ad

Recently uploaded (20)

BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
Nguyen Thanh Tu Collection
 
Operations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdfOperations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdf
Arab Academy for Science, Technology and Maritime Transport
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
dynastic art of the Pallava dynasty south India
dynastic art of the Pallava dynasty south Indiadynastic art of the Pallava dynasty south India
dynastic art of the Pallava dynasty south India
PrachiSontakke5
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Engage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdfEngage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdf
TechSoup
 
Grade 3 - English - Printable Worksheet (PDF Format)
Grade 3 - English - Printable Worksheet  (PDF Format)Grade 3 - English - Printable Worksheet  (PDF Format)
Grade 3 - English - Printable Worksheet (PDF Format)
Sritoma Majumder
 
Political History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptxPolitical History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdfIntroduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
james5028
 
Kenan Fellows Participants, Projects 2025-26 Cohort
Kenan Fellows Participants, Projects 2025-26 CohortKenan Fellows Participants, Projects 2025-26 Cohort
Kenan Fellows Participants, Projects 2025-26 Cohort
EducationNC
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Sugar-Sensing Mechanism in plants....pptx
Sugar-Sensing Mechanism in plants....pptxSugar-Sensing Mechanism in plants....pptx
Sugar-Sensing Mechanism in plants....pptx
Dr. Renu Jangid
 
SPRING FESTIVITIES - UK AND USA -
SPRING FESTIVITIES - UK AND USA            -SPRING FESTIVITIES - UK AND USA            -
SPRING FESTIVITIES - UK AND USA -
Colégio Santa Teresinha
 
APM Midlands Region April 2025 Sacha Hind Circulated.pdf
APM Midlands Region April 2025 Sacha Hind Circulated.pdfAPM Midlands Region April 2025 Sacha Hind Circulated.pdf
APM Midlands Region April 2025 Sacha Hind Circulated.pdf
Association for Project Management
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
"Basics of Heterocyclic Compounds and Their Naming Rules"
"Basics of Heterocyclic Compounds and Their Naming Rules""Basics of Heterocyclic Compounds and Their Naming Rules"
"Basics of Heterocyclic Compounds and Their Naming Rules"
rupalinirmalbpharm
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
Nguyen Thanh Tu Collection
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
dynastic art of the Pallava dynasty south India
dynastic art of the Pallava dynasty south Indiadynastic art of the Pallava dynasty south India
dynastic art of the Pallava dynasty south India
PrachiSontakke5
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Engage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdfEngage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdf
TechSoup
 
Grade 3 - English - Printable Worksheet (PDF Format)
Grade 3 - English - Printable Worksheet  (PDF Format)Grade 3 - English - Printable Worksheet  (PDF Format)
Grade 3 - English - Printable Worksheet (PDF Format)
Sritoma Majumder
 
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdfIntroduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
james5028
 
Kenan Fellows Participants, Projects 2025-26 Cohort
Kenan Fellows Participants, Projects 2025-26 CohortKenan Fellows Participants, Projects 2025-26 Cohort
Kenan Fellows Participants, Projects 2025-26 Cohort
EducationNC
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Sugar-Sensing Mechanism in plants....pptx
Sugar-Sensing Mechanism in plants....pptxSugar-Sensing Mechanism in plants....pptx
Sugar-Sensing Mechanism in plants....pptx
Dr. Renu Jangid
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
"Basics of Heterocyclic Compounds and Their Naming Rules"
"Basics of Heterocyclic Compounds and Their Naming Rules""Basics of Heterocyclic Compounds and Their Naming Rules"
"Basics of Heterocyclic Compounds and Their Naming Rules"
rupalinirmalbpharm
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
Ad

Android a fast clustering-based feature subset selection algorithm for high-dimensional data

  • 1. A FAST CLUSTERING-BASED FEATURE SUBSET SELECTION ALGORITHM FOR HIGH-DIMENSIONAL DATA ABSTRACT: Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent; the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers. ECWAY TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS OUR OFFICES @ CHENNAI / TRICHY / KARUR / ERODE / MADURAI / SALEM / COIMBATORE CELL: +91 98949 17187, +91 875487 2111 / 3111 / 4111 / 5111 / 6111 VISIT: www.ecwayprojects.com MAIL TO: [email protected]