SlideShare a Scribd company logo
Structure-Process-Property of Biaxially
Oriented Shrink Film
Pat Thomas
PRThomas Technologies, LLC
International Polyolefin Conference 2018
 Purpose of the paper is connect the dots:
• Structure-Process-Properties of biax oriented shrink film
• Resins-Equipment-Applications
 Specifically the presentation will focus on:
• Material:
 Nova Chemical, US Patent: 6,340,532: 2002
Shrink Film
• Equipment
 Sealed Air’s US Patent: 8,012,572: 2011
Microlayering die technology
 Schirmer’s US Patent: 8,870,561: 2014
Nanolayering die technology
Introduction
 Biax shrink film shrinks around a product when heated closed to the
melting point
 Typical resins used to manufacture shrink films include:
• Polyvinyl chloride (PVC)
• Polypropylene (PP)
• Linear-low density polyethylene (LLDPE)
• Low density polyethylene (LDPE)
• High density polyethylene (HDPE)
• Copolymers of ethylene and vinyl acetate (EVA)
• Copolymers of ethylene and vinyl alcohols (EVOH)
• Ionomers (e.g. Surlyn™)
• Copolymers of vinylidene chloride (e.g. PVDC, SARAN™)
• Copolymers of ethylene acrylic acid (EAA)
• Polyamides (PA)
Introduction – Basic Shrink Film
 End Use Applications Include:
• Food packaging; Oxygen and moisture barrier bag:
 Frozen poultry
 Primal meat cuts
 Processed meat and cheese products
• Non-Food packaging; overwraps:
 Compact disks
 Audio/video tapes
 Computer
 Software boxes
 Magazines
 Confectionery
 Others
Introduction – Shrink Film
 Key Critical Properties of Shrink Film Include:
• Free Shrink
• Shrink Force
• Dart Impact
• Tear Strength
• Stiffness
• Haze
• Gloss
• Burn Through Resistance, melt strength
 Biax Shrink Film Manufacturing Processes Include:
• Tenter Frame
• Double bubble blown film
• Triple bubble blown film
Introduction- Shrink Film
 Both Material and Die Technology information is organized
as outlined below:
• Objective
• Experimental Procedure
 Resins
 Equipment Description
 Process Conditions
 Trial Design: Variables
• Results
• Discussion
• Conclusion
Introduction
Structure-Process-Property ultimately determines Film Properties
Introduction
Resin Characterization Equipment Design Process Conditions
MW
MWD
Branching
Crystallinity
Functionalit
y
Screw Design
Die Design
Die Gap
Cooling
Blow-Up Ratio (BUR)
Drawn Down Ratio
Frost Line Height
Specific Output
Film Properties
Structure Process
TRANSITION
MATERIAL:
DUAL REACTOR SOLUTION
LLDPE DEVELOPMENT
 BACKGROUND
• At E.I. DuPont Clysar, Developed and patented a
monolayer LLDPE shrink film to compete against Sealed
Air’s D-955 coex shrink film
• At Dow Chemical, Developed PE resins
• At Nova Chemical, served as Technical Manager
 Dual reactor solution LLDPE development project
• Sealed Air was Nova’s a development partner in this
project
Dual Reactor Solution LLDPE Development
 In 2002 the following LLDPE resins existed:
• ZN-LLDPE
 Organoleptic issues – low MW fraction
 Inferior impact strength
• mLLDPE
 Good organoleptic and impact strength
 Inferior tear strength
 Low melt strength, bubble stability issues
 Nova’s Objective:
• Develop a LLDPE resin to mitigate deficiencies
Introduction
- Non-Uniform
mLLDPE - Uniform
 Produce experimental resins on dual reactor process:
 Fabricate experimental films on Soten’s double bubble
blown film equipment
 Analyze physical properties, present results to develepment
partner
 Evaluate experimental film on typical packaging equipment
Experimental Procedure
 Dual Reactor Solution Process Variables:
• Number of reactors: Dual or Single
• Catalyst: Advanced vs Existing
• % Comonomer: Rx1, Rx2, Both
• Reactor Stirring Tech: Experimental vs Existing
 LLDPE Resin Characteristic Variable Targets:
• Melt Index (g.10 min): 0.5; 1.0
• MWD (SEx): 1.37, 1.35, 1.40, 1.29
• Density (g/cc): 0.920, 0.914
• COHO ratio: 4.4, 3.7
Experimental Procedure: Trial Design
Experimental Procedure: Resins
Resin 1 Resin 2 Resin 3 Resin 4 Resin 5
Experimental Resin R1 R2-c R3 R4 R5
Description Dual RX Dual RX Dual RX Single RX Single RX
High C8 in Rx1 Low C8 in Rx1 C8 in Rx1 & Rx2
MI2 (g/10 min) 0.50 0.57 0.57 1.00 0.50
Density (g/cc) 0.9195 0.9202 0.9141 0.9210 0.9190
MWD (S E x) 1.37 1.35 1.40 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Experimental Procedure: Resin
Comonomer Content in High Molecular Weight Region
GPC-TREF Technique
4
6
8
10
12
14
16
5 5.2 5.4 5.6 5.8 6
Log Molecular Weight
#ofBranches/1000Carbons
Dual Rx - High C8
Dual Rx - Low C8
11G1
Molecular Weight = 350,000
Single Rx
Log Molecular Weight
#ofBranches/100carbonatoms
GPC-TREF Plot
Comonomer Content in High MW Region
5.0 5.2 5.4 5.6 5.8 6.0
0.4
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
Single Rx
Old Catalyst
Adv CatalystAdv Catalyst
Adv Catalyst
Soten Double Bubble Blown Film Line
Experimental Procedure:
Equipment Description
Experimental Procedure:
Equipment Description
Extruder Layer Diameter L/D
1. External 50mm (1.97 in) 38
2. Intermediate 60mm (2.36 in) 32
3. Central 70mm (2.75 in) 33
4. Intermediate 60mm (2.36 in) 32
5. Internal 50mm (1.97 in) 38
Die Size 240 mm (9.45 in)
Die gap 1.5 mm (60 mil)
Air Ring 1 high pressure
Air Ring 2 low pressure, high volume
Air Ring 3 low pressure, high volume
Experimental Procedure:
Blown Film Process Conditions
Barrel Zones 180 - 230 C (356 - 446 F)
Die 220 C (428 F)
Melt Temp. 225 C (437 F)
Cooling Water 15 C (60 F)
Cooling Air 10 C (50 F)
Stretch Ratio 5 X 5
Orient. Temp 101 C (213 F)
Output (Kg/hr) 100 (220 lbs/hr)
Lay Flat 1700 mm (67 in)
Experimental Procedure
Shrink Packaging Trial
 Shrink Wrapped Booklets
 Shrink Tunnel: Elantech
 Experimental films evaluated:
• Oven Temperatures:
 125 C, 150 C, 175 C, 200 C
• Conveyer belt speed range:
 2 to 42 fpm
Experimental Procedure
Shrink Packaging Trial
 Defects:
• Dog Ears, Wrinkles
• Burn-Through
 Results reported:
• Min and Max conveyor speed
 Achieved “Perfect” packages
at each temp.
 Represents the Processing
Window
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1 0.5
Density (g/cc) 0.919 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.919 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Film Physical Properties Results
Experimental Resin R1 R2-c R3 R4 R5
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx
MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5
Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919
MWD (S E x) 1.37 1.35 1.4 1.34 1.29
COHO** 4.4 3.7 4.7 3.7 4.4
Shrink Packaging Performance
Experimental Resin R1 R2-c R3 R4 R5 C1 C2 C3 C4
Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 Single RX Single RX Single RX Single RX Film 1 Film 2
MI2 (g/10 min) 0.50 0.57 0.57 1.00 0.50 0.72 1.00 Coex Monlayer
Density (g/cc) 0.920 0.920 0.914 0.920 0.920 0.920 0.920 Crosslinked Crosslinked
MWD (S E x) 1.37 1.35 1.4 1.34 1.29        
COHO** 4.4 3.7 4.7 3.7 4.4        
Dual RX solution resins perform
better than commercial shrink film
products, except R4
 The experimental films exhibit excellent physical properties
Note: Experimental films are not:
• Multilayer structures
• Cross-linked
 As a result of this work, ZN-LLDPE Product Line was
developed, patented and commercialized
• $1 Billion investment
• 1 Billion lbs./yr. capacity
• Specifically, LLDPE (1.0 MI, 0.920 g/cc) for shrink film
applications
Conclusions
Resin: How It Works
Control of MWD with Multiple Reactors
 
Different but Distinct species in each reactor - influence the position and
concentration of the MW component of the polymer structure
Resin Structure: Conventional vs Bimodal
 
Resin Structure can be optimized by controlling MI, Density, MWD of each species in the dual
reactor process
•Reactor split controls the overall MWD
•C8 added to RX1 (High MW fraction) to improve strength
•Smaller amount of RX2 (Low MW fraction) to reduces organoleptic and smoke issues
Taste,
Odor,
Smoke,
Migration
Processability
Lubrication
Mechanical
Strength,
Tie Molecules
Processability,
melt strength,
orientation
development
Conventional 
Bimodal
1 2 3 4 5
TRANSITION
EQUIPMENT DESIGN
ANNULAR MICROLAYERING
DIE TECHNOLOGY
 Sealed Air’s Objective:
 Internally develop the annular microlayering die technology in
order to establish a competitive advantage in manufacturing:
• Thinner films
• Superior performance
• Less raw materials used
• Significant cost reduction
Annular Microlayered Shrink Film
Sealed Air Patent: 8,012,572
Equipment Description
Microlayered Die DesignDownward Blown Film Line
Conventional die plates
Microlayer die plates
Equipment Description
Die Plate
Spiral flow with
leakage towards the
center of the die
onto an internal
mandrel
 Resin variables in microlayers:
• LLDPE O-LLDPE, H-LLDPE, B-LLDPE
• EVA; %VA 2.5, 3.3, 8.5, 20.0
• VLDPE; Density 0.900, 0.906, 0.912
• PE vs PS
• Type and % Repro PE, PP, PA
 Film Structures Variables:
• Conventional VS Microlayer Coex 3, 5 layer; 25 microlayers
• Film Thickness (mils) 0.6, 0.3
 Microlayered Film Formulations Variables: Note: M1 and M2 alternated and repeated
• Microlayer 1: LDPE, VLDPE, LDPE+VLDPE, LLDPE+Repro
• Microlayer 2: MDPE, VLDPE, MDPE+LLDPE,
LLDPE+ Repro, SBS, VLDPE+LLDPE
 Orientation: 5x5, 6x6
Experimental Procedure:
Resins, Formulations, and Film Structures
Resins
Reference
Resin Type MI (g/10 min) Density (g/cc) Melt Temp % VA
Dowlex 2037 MDPE-1 2.5 0.935 124.7
FL M3105 MDPE-2 2.2 0.936
Dowlex 2036G MDPE-3 2.5 0.937 125.0
Flint Hill EVA 1335 EVA-1 2.0 0.924 104.7 3.3
Westlake EF347AA EVA-2 2.0 0.925 2.5
Escorene LD318.92 EVA-3 2.0 0.930 8.7
Escorene LD761.36 EVA-4 5.7 0.950 72.0 20.0
Exceed 1012CA VLDPE-1 1.0 0.912
Affinity PF 1140G VLDPE-2 1.6 0.899 96.1
Affinity PL 1881G VLDPE-3 1.0 0.906 100.0
Exact 3132 VLDPE-4 1.2 0.900 96.0
Attane 4203 VLDPE-5 0.8 0.907 122.8
Styroflex 2G 66 SBS-1 12.5 1.000
Styroflux HS 70 SBS-2 13.0 1.020
Dowlex 2045 O-LLDPE-1 1.0 0.920 122.2
Exxon LL3001 H-LLDPE-2 1.0 0.917 125.0
Westlake SC75858 H-LLDPE-3 0.5 0.917 121.0
LL1001.32 B-LLDPE-4 1.0 0.918 121.0
Repro-1 93% O-LLDPE 6% EVA 1% additives
Repro-2 22% PP 8% LLDPE 20% z-Surlyn 15% g-PE 24% PA 6+6/66 10% EVA
Repro-3 50.6 LLDPE 13.5% LDPE 30% PA 6 5.9% EVA
Film Formulations - Reference
Film Micro-1 Micro-2 Thickness (Mils)
F1 Conventional LLDPE-1+MDPE-1 0.3
F2 Conventional LLDPE-1 0.3
F3 Conventional LLDPE-1 0.6
F4 LLDPE-1+MDPE-1 LLDPE-1 0.3
F5 LLDPE-1 LLDPE-1+Repro-2 0.3
F6 VLDPE-3 LLDPE-1+MDPE-1 0.3
F7 LLDPE-1 MDPE-2+LLDPE-1 0.3
F8 LLDPE-2+VLDPE-1 LLDPE-2 0.3
F9 LLDPE-3+VLDPE-4 LLDPE-3 0.3
F10 VLDPE-5+LLDPE-1 LLDPE-1 0.3
F11 VLDPE-5 LLDPE-1+MDPE2 0.3
F12 LLDPE-1+VLDPE-2 LLDPE-1+VLDPE-2 0.3
F13 LLDPE-1 MDPE-1+LLDPE-1 0.3
F14 LLDPE-1 LLDPE-1 0.3
F15 LLDPE-1 VLDPE-1 0.3
F16 LLDPE-1 LLDPE-1 0.3
F17 LLDPE-1 LLDPE-1+REPRO-1 0.3
F18 LLDPE-1+REPRO-1 LLDPE-1+REPRO-1 0.3
F19 LLDPE-1+REPRO-1 LLDPE-1+REPRO-1 0.3
F20 LLDPE-1+REPRO-2 LLDPE-1+REPRO-2 0.3
F21 LLDPE-1 VLDPE-1 0.3
F22 VLDPE-2 SBS-2 0.3
F23 VLDPE-3 LLDPE-1 0.3
F24 EVA-3 MDPE-2 0.3
F25 VLDPE-1 LLDPE-2 0.3
Microlayered Film Example
Ratio of Bulk Layer Thickness to Microlayer Thickness Range: 1:2 to 1:40
Microlayer 1 and Microlayer 2
are alternated and repeated
13
Microlayers
12
Microlayers
Microlayers
Bulk Layers
Bulk Layers
 F1-F3 Conventional film; 3 and 5 layer coex
 F3 is 0.6 mil, all others 0.3 mils thick
 F4, F10, F11, and F12 have greatest difference in alternating “Hard/”Soft”
layers
 F1 and F4: same resins; Conventional vs Microlayered
Annular Conventional vs Microlayer Shrink Film
Microlayered
Conventional vs Microlayer
Same Resins: MDPE/LDPE Greatest difference between
“Hard” – “Soft” Layers
 The major attribute in the finished film: 
Create an “I-beam” effect by
alternating and repeating “hard/soft”
layers
 The repeated layering of two materials 
with a different properties can create a 
new film that can exceed the average or 
the maximum value of the individual 
layers.
 Normally “I” beam effect is applied to 
the tensile strength characteristics
• However, with nanolayered film the 
I-beam effect improves:
 Tear
 Puncture
 Elongation
 Secant modulus
Annular Conventional vs Microlayer Shrink Film
Annular Conventional vs Microlayer Shrink Film
 F3: Conventional at 0.6 mils, F4 –F25 microlayered at 0.3 mils
 F4 microlayered at half the thickness of F3 but equivalent Tear
 F4 microlayered with alternating “Hard” / “Soft” layers, also F10, F11, F12
 F2 and F3: Same resins, Conventional 0.30 and 0.6 mils respectively, half the thickness and half
the tear
0.6 mils Conventional vs 0.3 mils
Microlayer Microlayered: Hard/Soft alternating layers
Annular Conventional vs Microlayer Shrink Film
 Sample F1-F3 fabricated with standard annular plate die, 3 or 5 layers
 F3 is 0.6 mils conventional film; All others 0.3 mils thick
 F4 – F25 Microlayered Film
 F13, F14, F15 oriented 6X6
Oriented 6X6; others 5x5
F3 0.6 mils Conventional vs F4 0.3 mils Microlayer
Annular Conventional vs Microlayer Shrink Film
F1-F3 fabricated with standard annular plate die
F3 conventional 0.6 mil film; F4 – F25 microlayered 0.3 mil film
F3 has superior impact strength as compared to thinner or microlayered films
Annular Conventional vs Microlayer Shrink Film
 F10, F11, F12 have the greatest difference in Hard/Soft alternating microlayers
 F17, F18, F19 have repro included
Annular Conventional vs Microlayer Shrink Film
 F17, F18, F19 have
Repro-1 included:
Film Micro-1 Micro-2
F17 100% LLDPE 10% LLDPE
90% Repro-1
F18 60% LLDPE 20% LLDPE
40% Repro-1 80% Repro-1
F19 50% LLDPE 50% LLDPE
50% Repro-1 50% Repro-1
F19:
•50% LLDPE
•50% Repro-1
•Both M1 and M2
Annular Conventional vs Microlayer Shrink Film
Film Micro-1 Micro-2
F9 50% Exact 3132 100%Westlake SC75858
50% Westlake SC75858
F10 50% Attane 4203 100% Dowlex 2045
50% Dowlex 2045
F11 100% 4203 60% Dowlex 2045
40% Dowlex 2037
F12 60% Dowlex 2045 50% Dowlex 2045
40% Affinity 11PF 1140G 50% Dowlex 2037
Internal Microlayers effect surface property
Resin Type MI Density
Dowlex 2045 O-LLDPE 1 0.92
Westlake SC75858 H-LLDPE 0.5 0.917
Dowlex 2037 MDPE 2.5 0.935
Attane 4203 VLDPE 0.8 0.907
Affinity PL 1881G VLDPE 1 0.906
Exact 3132 VLDPE 1.2 0.9
Affinity PF 1140G VLDPE 1.6 0.899
Annular Conventional vs Microlayer Shrink Film
F17, F18, and F19 contain Repro-1
•93% O-LLDPE
•6% EVA
•1% Additives
Film Micro-1 Micro-2
F17 100% LLDPE 10% LLDPE
90% Repro-1
F18 60% LLDPE 20% LLDPE
40% Repro-1 80% Repro-1
F19 50% LLDPE 50% LLDPE
50% Repro-1 50% Repro-1
50% LLDPE
50% Repro
1. Microlayered film:
• 50% thinner than conventional film
• Equivalent physical properties
2. Layer sequencing microlayers creates I-beam effect which significantly
improves physical properties
3. Less expensive material could be substituted without sacrificing performance
4. More reclaimed material can be added without sacrificing performance
5. Thinner layers of expensive material (EVOH, PA, Tie Resins) with equivalent
barrier performance
6. To connect the dots: Commercial dual reactor ZN-LLDPE – used in
microlayered film structures
Annular Microlayered Shrink Film
Conclusions
TRANSITION
EQUIPMENT DESIGN
ANNULAR NANOLAYERING
DIE TECHNOLOGY
• US Patent: 6,413,595, Schrimer, 2002
– Modular Disc Co-extrusion Die
• US Patent: 8,870,561, Schirmer, 2014
– Layer Sequence Repeater Module (LSR) for the Modular Disc
Co-Extrusion Die
– Patents awarded
• USA
• Canada
• Europe
• China
History & Design of the
Annular Nanolayering Modular Disc Die
• A Nanolayer is an order of magnitude thinner than a
microlayer
Microlayer vs Nanolayer
Practical limit for Microlayer
Practical limit of nanolayering is 100
times thinner than microlayering!
Microns Mils
3 1.118
0.03 0.001Practical limit for Nanolayer
Annular Nanolayering Film Technology
Die Design
• Modular Disc Die Design
• Layer Sequence Repeater
All Microlayers
All Nanolayer
• Nanoscale confinement demonstrates dramatic
changes in crystallization
• Confined crystallization of polymers leads to the
formation of oriented lamellae in nanolayered films
• The oriented lamellae increase the tortuitous
pathway with increasing the lamellar orientation
thereby improving the barrier performance
• As the layer thicknesses approached a few
nanometers, lamellar morphologies in HDPE layers
resembled “single crystal” structures
• Note: the results of nanolayering film depends on
material used
Nanolayering Mechanism
Gas Barrier Properties
Commercially Available Annular
Nanolayer Blown Film Line
Commercial 82 Layer Nanolayer Blown Film Line
• Annular Nanolayer Die Technology commercially available
• Annular Nanolayering technology provides equivalent or greater capabilities
as compared to Microlayering technology
– Microlayering is limited to 29 layers
– Nanolayering is limited to greater than 29 layers
• Microlayering/Nanolayering technology is applicable in the following film
processes:
– Blown Conventional, Double Bubble, Triple Bubble, Downward Water Quench
– Cast Conventional, Round Cast (Downward Water Quench)
– MDO
– Tenter Frame Sequential, Simultaneous
– Extrusion Coating, Laminations
Annular Nanolayer Film Summary
Thank You
Questions

More Related Content

PPTX
Manufacturing of laminates
ak14032020
 
PPSX
Prejudices about polyamide for multilayer films
Ted Brink
 
PDF
Functional barrier films in flexible packaging industry
Henky Wibawa
 
PDF
Food Packaging Testing Equipment by PackTest
Rohit Chawla
 
PDF
Metallised films
hoangvunl
 
PPT
7. coatings lacqures and varnishes
SHRIKANT ATHAVALE
 
DOCX
Trabalho de sobre a Borracha Butilica (IIR)
Gabriela Begalli
 
Manufacturing of laminates
ak14032020
 
Prejudices about polyamide for multilayer films
Ted Brink
 
Functional barrier films in flexible packaging industry
Henky Wibawa
 
Food Packaging Testing Equipment by PackTest
Rohit Chawla
 
Metallised films
hoangvunl
 
7. coatings lacqures and varnishes
SHRIKANT ATHAVALE
 
Trabalho de sobre a Borracha Butilica (IIR)
Gabriela Begalli
 

What's hot (20)

PDF
Paper Based Packaging-Sustainable Coatings
Kevin Fiur
 
PPTX
Plasticizer
AMARARAKH
 
PPTX
Adhesives Properties and Formulation
Ajjay Kumar Gupta
 
PDF
Flexible packaging materials 2013
Jose Giraldez
 
PPT
Thermoplastic elastomers (TPE)
N.Prakasan
 
PDF
Adhesion Mechanism
Sudhansu Senapati
 
PPTX
Package Testing for Food Factory
Rohit Chawla
 
PPT
02.multi layer composite films
SHRIKANT ATHAVALE
 
PPTX
Natural Rubber
faheem maqsood
 
PPTX
How is glass made
DeveshVijay4
 
PDF
Guide to tinplate
Tony Wallace
 
PPTX
Glass fibres
Arts & Culture Society 2012
 
PDF
Glass Bottle Manufacturing
Harish Balout
 
PDF
Developments in clear high barrier packaging
nattapol76
 
PDF
Packaging test report (sample)
Michel Comtois
 
PPT
Ppi intro to inks
Samer Ibrahim
 
PPT
Food Packaging Films 101
Pyramid Packaging Inc.
 
PDF
Adhesive Coating methods part 1 copy
SHRIKANT ATHAVALE
 
PDF
Adhesive Technology & Formulations (Technology Book)
Vijay Gupta
 
PDF
Introduction to waterborne paints & coatings rheology
specialchem-ada
 
Paper Based Packaging-Sustainable Coatings
Kevin Fiur
 
Plasticizer
AMARARAKH
 
Adhesives Properties and Formulation
Ajjay Kumar Gupta
 
Flexible packaging materials 2013
Jose Giraldez
 
Thermoplastic elastomers (TPE)
N.Prakasan
 
Adhesion Mechanism
Sudhansu Senapati
 
Package Testing for Food Factory
Rohit Chawla
 
02.multi layer composite films
SHRIKANT ATHAVALE
 
Natural Rubber
faheem maqsood
 
How is glass made
DeveshVijay4
 
Guide to tinplate
Tony Wallace
 
Glass Bottle Manufacturing
Harish Balout
 
Developments in clear high barrier packaging
nattapol76
 
Packaging test report (sample)
Michel Comtois
 
Ppi intro to inks
Samer Ibrahim
 
Food Packaging Films 101
Pyramid Packaging Inc.
 
Adhesive Coating methods part 1 copy
SHRIKANT ATHAVALE
 
Adhesive Technology & Formulations (Technology Book)
Vijay Gupta
 
Introduction to waterborne paints & coatings rheology
specialchem-ada
 
Ad

Similar to Annular nanolayered shrink film 3 26-2018 (20)

PPTX
Film Line presentation on BOPP line for..
AbdulBasit738019
 
PPTX
Presentation on the Bopp line for the...
AbdulBasit738019
 
PPTX
Printing, lamination & material structure
Chaudhary Zubair Qadir
 
PPTX
Annular nanolayer film extrusion may 2016 2 27-2017
Pat Thomas
 
PDF
Boost Blown Film Rate
TopasAdvancedPolymers
 
PPTX
POLYSTYRENE
lukkumanul
 
PPTX
LINKEDINHMSPP
ttglink
 
PDF
SULI_Summer_2016_Research Paper_Ainslie_Kenneth
Kenneth Ainslie
 
PPTX
Polymer Packaging (Laminations and Coatings)
fbsin90
 
PDF
140225 Composites EXPO 2014
Toine Dinnissen
 
PDF
449165_02_Extrusion_of_tubular.pdf
JulioGarca97
 
PPTX
polystyrene
jeff jose
 
DOCX
4996 5000.output
j1075017
 
PPTX
Slideshare royce reactive diluent powerpoint v2
RoyceIntl
 
PPT
Rheology last lecture 2015
malcolmmackley
 
PDF
Bio4self - Pellet Production - Erna Muks - Tecnaro
ChristineHoegHanson
 
PPT
2014 AEP Custom Films Presentation
Right Way Packaging Solutions
 
PPT
M144 Ch03 Spec
FNian
 
DOCX
COMPRESSION MOLDING REPORT
Nurul Jannah
 
Film Line presentation on BOPP line for..
AbdulBasit738019
 
Presentation on the Bopp line for the...
AbdulBasit738019
 
Printing, lamination & material structure
Chaudhary Zubair Qadir
 
Annular nanolayer film extrusion may 2016 2 27-2017
Pat Thomas
 
Boost Blown Film Rate
TopasAdvancedPolymers
 
POLYSTYRENE
lukkumanul
 
LINKEDINHMSPP
ttglink
 
SULI_Summer_2016_Research Paper_Ainslie_Kenneth
Kenneth Ainslie
 
Polymer Packaging (Laminations and Coatings)
fbsin90
 
140225 Composites EXPO 2014
Toine Dinnissen
 
449165_02_Extrusion_of_tubular.pdf
JulioGarca97
 
polystyrene
jeff jose
 
4996 5000.output
j1075017
 
Slideshare royce reactive diluent powerpoint v2
RoyceIntl
 
Rheology last lecture 2015
malcolmmackley
 
Bio4self - Pellet Production - Erna Muks - Tecnaro
ChristineHoegHanson
 
2014 AEP Custom Films Presentation
Right Way Packaging Solutions
 
M144 Ch03 Spec
FNian
 
COMPRESSION MOLDING REPORT
Nurul Jannah
 
Ad

Recently uploaded (20)

PPTX
Embark on a journey of cell division and it's stages
sakyierhianmontero
 
PDF
Little Red Dots As Late-stage Quasi-stars
Sérgio Sacani
 
PPTX
fghvqwhfugqaifbiqufbiquvbfuqvfuqyvfqvfouiqvfq
PERMISONJERWIN
 
PPTX
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
PDF
Gamifying Agent-Based Models in Cormas: Towards the Playable Architecture for...
ESUG
 
PDF
Renewable Energy Resources (Solar, Wind, Nuclear, Geothermal) Presentation
RimshaNaeem23
 
PPTX
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
PPTX
Modifications in RuBisCO system to enhance photosynthesis .pptx
raghumolbiotech
 
PDF
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
PPTX
Seminar on ethics in biomedical research
poojabisht244
 
PPTX
GENETIC TECHNOLOGY A level biology
JuthikaMal
 
PDF
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
PDF
Directing Generative AI for Pharo Documentation
ESUG
 
PPTX
METABOLIC_SYNDROME Dr Shadab- kgmu lucknow pptx
ShadabAlam169087
 
PDF
Agricultural Extension Presentation Slides
addisinicholas
 
DOCX
Echoes_of_Andromeda_Partial (1).docx9989
yakshitkrishnia5a3
 
PDF
Migrating Katalon Studio Tests to Playwright with Model Driven Engineering
ESUG
 
PPTX
INTRO-TO-CRIM-THEORIES-OF-CRIME-2023 (1).pptx
ChrisFlickIII
 
PPTX
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
PDF
urticaria-1775-rahulkalal-250606145215-0ff37bc9.pdf
GajananPatil761074
 
Embark on a journey of cell division and it's stages
sakyierhianmontero
 
Little Red Dots As Late-stage Quasi-stars
Sérgio Sacani
 
fghvqwhfugqaifbiqufbiquvbfuqvfuqyvfqvfouiqvfq
PERMISONJERWIN
 
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
Gamifying Agent-Based Models in Cormas: Towards the Playable Architecture for...
ESUG
 
Renewable Energy Resources (Solar, Wind, Nuclear, Geothermal) Presentation
RimshaNaeem23
 
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
Modifications in RuBisCO system to enhance photosynthesis .pptx
raghumolbiotech
 
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
Seminar on ethics in biomedical research
poojabisht244
 
GENETIC TECHNOLOGY A level biology
JuthikaMal
 
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
Directing Generative AI for Pharo Documentation
ESUG
 
METABOLIC_SYNDROME Dr Shadab- kgmu lucknow pptx
ShadabAlam169087
 
Agricultural Extension Presentation Slides
addisinicholas
 
Echoes_of_Andromeda_Partial (1).docx9989
yakshitkrishnia5a3
 
Migrating Katalon Studio Tests to Playwright with Model Driven Engineering
ESUG
 
INTRO-TO-CRIM-THEORIES-OF-CRIME-2023 (1).pptx
ChrisFlickIII
 
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
urticaria-1775-rahulkalal-250606145215-0ff37bc9.pdf
GajananPatil761074
 

Annular nanolayered shrink film 3 26-2018

  • 1. Structure-Process-Property of Biaxially Oriented Shrink Film Pat Thomas PRThomas Technologies, LLC International Polyolefin Conference 2018
  • 2.  Purpose of the paper is connect the dots: • Structure-Process-Properties of biax oriented shrink film • Resins-Equipment-Applications  Specifically the presentation will focus on: • Material:  Nova Chemical, US Patent: 6,340,532: 2002 Shrink Film • Equipment  Sealed Air’s US Patent: 8,012,572: 2011 Microlayering die technology  Schirmer’s US Patent: 8,870,561: 2014 Nanolayering die technology Introduction
  • 3.  Biax shrink film shrinks around a product when heated closed to the melting point  Typical resins used to manufacture shrink films include: • Polyvinyl chloride (PVC) • Polypropylene (PP) • Linear-low density polyethylene (LLDPE) • Low density polyethylene (LDPE) • High density polyethylene (HDPE) • Copolymers of ethylene and vinyl acetate (EVA) • Copolymers of ethylene and vinyl alcohols (EVOH) • Ionomers (e.g. Surlyn™) • Copolymers of vinylidene chloride (e.g. PVDC, SARAN™) • Copolymers of ethylene acrylic acid (EAA) • Polyamides (PA) Introduction – Basic Shrink Film
  • 4.  End Use Applications Include: • Food packaging; Oxygen and moisture barrier bag:  Frozen poultry  Primal meat cuts  Processed meat and cheese products • Non-Food packaging; overwraps:  Compact disks  Audio/video tapes  Computer  Software boxes  Magazines  Confectionery  Others Introduction – Shrink Film
  • 5.  Key Critical Properties of Shrink Film Include: • Free Shrink • Shrink Force • Dart Impact • Tear Strength • Stiffness • Haze • Gloss • Burn Through Resistance, melt strength  Biax Shrink Film Manufacturing Processes Include: • Tenter Frame • Double bubble blown film • Triple bubble blown film Introduction- Shrink Film
  • 6.  Both Material and Die Technology information is organized as outlined below: • Objective • Experimental Procedure  Resins  Equipment Description  Process Conditions  Trial Design: Variables • Results • Discussion • Conclusion Introduction
  • 7. Structure-Process-Property ultimately determines Film Properties Introduction Resin Characterization Equipment Design Process Conditions MW MWD Branching Crystallinity Functionalit y Screw Design Die Design Die Gap Cooling Blow-Up Ratio (BUR) Drawn Down Ratio Frost Line Height Specific Output Film Properties Structure Process
  • 9.  BACKGROUND • At E.I. DuPont Clysar, Developed and patented a monolayer LLDPE shrink film to compete against Sealed Air’s D-955 coex shrink film • At Dow Chemical, Developed PE resins • At Nova Chemical, served as Technical Manager  Dual reactor solution LLDPE development project • Sealed Air was Nova’s a development partner in this project Dual Reactor Solution LLDPE Development
  • 10.  In 2002 the following LLDPE resins existed: • ZN-LLDPE  Organoleptic issues – low MW fraction  Inferior impact strength • mLLDPE  Good organoleptic and impact strength  Inferior tear strength  Low melt strength, bubble stability issues  Nova’s Objective: • Develop a LLDPE resin to mitigate deficiencies Introduction - Non-Uniform mLLDPE - Uniform
  • 11.  Produce experimental resins on dual reactor process:  Fabricate experimental films on Soten’s double bubble blown film equipment  Analyze physical properties, present results to develepment partner  Evaluate experimental film on typical packaging equipment Experimental Procedure
  • 12.  Dual Reactor Solution Process Variables: • Number of reactors: Dual or Single • Catalyst: Advanced vs Existing • % Comonomer: Rx1, Rx2, Both • Reactor Stirring Tech: Experimental vs Existing  LLDPE Resin Characteristic Variable Targets: • Melt Index (g.10 min): 0.5; 1.0 • MWD (SEx): 1.37, 1.35, 1.40, 1.29 • Density (g/cc): 0.920, 0.914 • COHO ratio: 4.4, 3.7 Experimental Procedure: Trial Design
  • 13. Experimental Procedure: Resins Resin 1 Resin 2 Resin 3 Resin 4 Resin 5 Experimental Resin R1 R2-c R3 R4 R5 Description Dual RX Dual RX Dual RX Single RX Single RX High C8 in Rx1 Low C8 in Rx1 C8 in Rx1 & Rx2 MI2 (g/10 min) 0.50 0.57 0.57 1.00 0.50 Density (g/cc) 0.9195 0.9202 0.9141 0.9210 0.9190 MWD (S E x) 1.37 1.35 1.40 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 14. Experimental Procedure: Resin Comonomer Content in High Molecular Weight Region GPC-TREF Technique 4 6 8 10 12 14 16 5 5.2 5.4 5.6 5.8 6 Log Molecular Weight #ofBranches/1000Carbons Dual Rx - High C8 Dual Rx - Low C8 11G1 Molecular Weight = 350,000 Single Rx Log Molecular Weight #ofBranches/100carbonatoms GPC-TREF Plot Comonomer Content in High MW Region 5.0 5.2 5.4 5.6 5.8 6.0 0.4 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 Single Rx Old Catalyst Adv CatalystAdv Catalyst Adv Catalyst
  • 15. Soten Double Bubble Blown Film Line Experimental Procedure: Equipment Description
  • 16. Experimental Procedure: Equipment Description Extruder Layer Diameter L/D 1. External 50mm (1.97 in) 38 2. Intermediate 60mm (2.36 in) 32 3. Central 70mm (2.75 in) 33 4. Intermediate 60mm (2.36 in) 32 5. Internal 50mm (1.97 in) 38 Die Size 240 mm (9.45 in) Die gap 1.5 mm (60 mil) Air Ring 1 high pressure Air Ring 2 low pressure, high volume Air Ring 3 low pressure, high volume
  • 17. Experimental Procedure: Blown Film Process Conditions Barrel Zones 180 - 230 C (356 - 446 F) Die 220 C (428 F) Melt Temp. 225 C (437 F) Cooling Water 15 C (60 F) Cooling Air 10 C (50 F) Stretch Ratio 5 X 5 Orient. Temp 101 C (213 F) Output (Kg/hr) 100 (220 lbs/hr) Lay Flat 1700 mm (67 in)
  • 18. Experimental Procedure Shrink Packaging Trial  Shrink Wrapped Booklets  Shrink Tunnel: Elantech  Experimental films evaluated: • Oven Temperatures:  125 C, 150 C, 175 C, 200 C • Conveyer belt speed range:  2 to 42 fpm
  • 19. Experimental Procedure Shrink Packaging Trial  Defects: • Dog Ears, Wrinkles • Burn-Through  Results reported: • Min and Max conveyor speed  Achieved “Perfect” packages at each temp.  Represents the Processing Window
  • 20. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1 0.5 Density (g/cc) 0.919 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 21. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 22. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.919 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 23. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 Rx 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 24. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 25. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 26. Film Physical Properties Results Experimental Resin R1 R2-c R3 R4 R5 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 1 RX 1 Rx MI2 (g/10 min) 0.5 0.57 0.57 1.0 0.5 Density (g/cc) 0.9195 0.9202 0.9141 0.921 0.919 MWD (S E x) 1.37 1.35 1.4 1.34 1.29 COHO** 4.4 3.7 4.7 3.7 4.4
  • 27. Shrink Packaging Performance Experimental Resin R1 R2-c R3 R4 R5 C1 C2 C3 C4 Description High C8 in Rx1 Low C8 in Rx1 Low C8 in Rx1 Single RX Single RX Single RX Single RX Film 1 Film 2 MI2 (g/10 min) 0.50 0.57 0.57 1.00 0.50 0.72 1.00 Coex Monlayer Density (g/cc) 0.920 0.920 0.914 0.920 0.920 0.920 0.920 Crosslinked Crosslinked MWD (S E x) 1.37 1.35 1.4 1.34 1.29         COHO** 4.4 3.7 4.7 3.7 4.4         Dual RX solution resins perform better than commercial shrink film products, except R4
  • 28.  The experimental films exhibit excellent physical properties Note: Experimental films are not: • Multilayer structures • Cross-linked  As a result of this work, ZN-LLDPE Product Line was developed, patented and commercialized • $1 Billion investment • 1 Billion lbs./yr. capacity • Specifically, LLDPE (1.0 MI, 0.920 g/cc) for shrink film applications Conclusions
  • 29. Resin: How It Works Control of MWD with Multiple Reactors   Different but Distinct species in each reactor - influence the position and concentration of the MW component of the polymer structure
  • 30. Resin Structure: Conventional vs Bimodal   Resin Structure can be optimized by controlling MI, Density, MWD of each species in the dual reactor process •Reactor split controls the overall MWD •C8 added to RX1 (High MW fraction) to improve strength •Smaller amount of RX2 (Low MW fraction) to reduces organoleptic and smoke issues Taste, Odor, Smoke, Migration Processability Lubrication Mechanical Strength, Tie Molecules Processability, melt strength, orientation development Conventional  Bimodal 1 2 3 4 5
  • 32.  Sealed Air’s Objective:  Internally develop the annular microlayering die technology in order to establish a competitive advantage in manufacturing: • Thinner films • Superior performance • Less raw materials used • Significant cost reduction Annular Microlayered Shrink Film Sealed Air Patent: 8,012,572
  • 33. Equipment Description Microlayered Die DesignDownward Blown Film Line Conventional die plates Microlayer die plates
  • 34. Equipment Description Die Plate Spiral flow with leakage towards the center of the die onto an internal mandrel
  • 35.  Resin variables in microlayers: • LLDPE O-LLDPE, H-LLDPE, B-LLDPE • EVA; %VA 2.5, 3.3, 8.5, 20.0 • VLDPE; Density 0.900, 0.906, 0.912 • PE vs PS • Type and % Repro PE, PP, PA  Film Structures Variables: • Conventional VS Microlayer Coex 3, 5 layer; 25 microlayers • Film Thickness (mils) 0.6, 0.3  Microlayered Film Formulations Variables: Note: M1 and M2 alternated and repeated • Microlayer 1: LDPE, VLDPE, LDPE+VLDPE, LLDPE+Repro • Microlayer 2: MDPE, VLDPE, MDPE+LLDPE, LLDPE+ Repro, SBS, VLDPE+LLDPE  Orientation: 5x5, 6x6 Experimental Procedure: Resins, Formulations, and Film Structures
  • 36. Resins Reference Resin Type MI (g/10 min) Density (g/cc) Melt Temp % VA Dowlex 2037 MDPE-1 2.5 0.935 124.7 FL M3105 MDPE-2 2.2 0.936 Dowlex 2036G MDPE-3 2.5 0.937 125.0 Flint Hill EVA 1335 EVA-1 2.0 0.924 104.7 3.3 Westlake EF347AA EVA-2 2.0 0.925 2.5 Escorene LD318.92 EVA-3 2.0 0.930 8.7 Escorene LD761.36 EVA-4 5.7 0.950 72.0 20.0 Exceed 1012CA VLDPE-1 1.0 0.912 Affinity PF 1140G VLDPE-2 1.6 0.899 96.1 Affinity PL 1881G VLDPE-3 1.0 0.906 100.0 Exact 3132 VLDPE-4 1.2 0.900 96.0 Attane 4203 VLDPE-5 0.8 0.907 122.8 Styroflex 2G 66 SBS-1 12.5 1.000 Styroflux HS 70 SBS-2 13.0 1.020 Dowlex 2045 O-LLDPE-1 1.0 0.920 122.2 Exxon LL3001 H-LLDPE-2 1.0 0.917 125.0 Westlake SC75858 H-LLDPE-3 0.5 0.917 121.0 LL1001.32 B-LLDPE-4 1.0 0.918 121.0 Repro-1 93% O-LLDPE 6% EVA 1% additives Repro-2 22% PP 8% LLDPE 20% z-Surlyn 15% g-PE 24% PA 6+6/66 10% EVA Repro-3 50.6 LLDPE 13.5% LDPE 30% PA 6 5.9% EVA
  • 37. Film Formulations - Reference Film Micro-1 Micro-2 Thickness (Mils) F1 Conventional LLDPE-1+MDPE-1 0.3 F2 Conventional LLDPE-1 0.3 F3 Conventional LLDPE-1 0.6 F4 LLDPE-1+MDPE-1 LLDPE-1 0.3 F5 LLDPE-1 LLDPE-1+Repro-2 0.3 F6 VLDPE-3 LLDPE-1+MDPE-1 0.3 F7 LLDPE-1 MDPE-2+LLDPE-1 0.3 F8 LLDPE-2+VLDPE-1 LLDPE-2 0.3 F9 LLDPE-3+VLDPE-4 LLDPE-3 0.3 F10 VLDPE-5+LLDPE-1 LLDPE-1 0.3 F11 VLDPE-5 LLDPE-1+MDPE2 0.3 F12 LLDPE-1+VLDPE-2 LLDPE-1+VLDPE-2 0.3 F13 LLDPE-1 MDPE-1+LLDPE-1 0.3 F14 LLDPE-1 LLDPE-1 0.3 F15 LLDPE-1 VLDPE-1 0.3 F16 LLDPE-1 LLDPE-1 0.3 F17 LLDPE-1 LLDPE-1+REPRO-1 0.3 F18 LLDPE-1+REPRO-1 LLDPE-1+REPRO-1 0.3 F19 LLDPE-1+REPRO-1 LLDPE-1+REPRO-1 0.3 F20 LLDPE-1+REPRO-2 LLDPE-1+REPRO-2 0.3 F21 LLDPE-1 VLDPE-1 0.3 F22 VLDPE-2 SBS-2 0.3 F23 VLDPE-3 LLDPE-1 0.3 F24 EVA-3 MDPE-2 0.3 F25 VLDPE-1 LLDPE-2 0.3
  • 38. Microlayered Film Example Ratio of Bulk Layer Thickness to Microlayer Thickness Range: 1:2 to 1:40 Microlayer 1 and Microlayer 2 are alternated and repeated 13 Microlayers 12 Microlayers Microlayers Bulk Layers Bulk Layers
  • 39.  F1-F3 Conventional film; 3 and 5 layer coex  F3 is 0.6 mil, all others 0.3 mils thick  F4, F10, F11, and F12 have greatest difference in alternating “Hard/”Soft” layers  F1 and F4: same resins; Conventional vs Microlayered Annular Conventional vs Microlayer Shrink Film Microlayered Conventional vs Microlayer Same Resins: MDPE/LDPE Greatest difference between “Hard” – “Soft” Layers
  • 40.  The major attribute in the finished film:  Create an “I-beam” effect by alternating and repeating “hard/soft” layers  The repeated layering of two materials  with a different properties can create a  new film that can exceed the average or  the maximum value of the individual  layers.  Normally “I” beam effect is applied to  the tensile strength characteristics • However, with nanolayered film the  I-beam effect improves:  Tear  Puncture  Elongation  Secant modulus Annular Conventional vs Microlayer Shrink Film
  • 41. Annular Conventional vs Microlayer Shrink Film  F3: Conventional at 0.6 mils, F4 –F25 microlayered at 0.3 mils  F4 microlayered at half the thickness of F3 but equivalent Tear  F4 microlayered with alternating “Hard” / “Soft” layers, also F10, F11, F12  F2 and F3: Same resins, Conventional 0.30 and 0.6 mils respectively, half the thickness and half the tear 0.6 mils Conventional vs 0.3 mils Microlayer Microlayered: Hard/Soft alternating layers
  • 42. Annular Conventional vs Microlayer Shrink Film  Sample F1-F3 fabricated with standard annular plate die, 3 or 5 layers  F3 is 0.6 mils conventional film; All others 0.3 mils thick  F4 – F25 Microlayered Film  F13, F14, F15 oriented 6X6 Oriented 6X6; others 5x5 F3 0.6 mils Conventional vs F4 0.3 mils Microlayer
  • 43. Annular Conventional vs Microlayer Shrink Film F1-F3 fabricated with standard annular plate die F3 conventional 0.6 mil film; F4 – F25 microlayered 0.3 mil film F3 has superior impact strength as compared to thinner or microlayered films
  • 44. Annular Conventional vs Microlayer Shrink Film  F10, F11, F12 have the greatest difference in Hard/Soft alternating microlayers  F17, F18, F19 have repro included
  • 45. Annular Conventional vs Microlayer Shrink Film  F17, F18, F19 have Repro-1 included: Film Micro-1 Micro-2 F17 100% LLDPE 10% LLDPE 90% Repro-1 F18 60% LLDPE 20% LLDPE 40% Repro-1 80% Repro-1 F19 50% LLDPE 50% LLDPE 50% Repro-1 50% Repro-1 F19: •50% LLDPE •50% Repro-1 •Both M1 and M2
  • 46. Annular Conventional vs Microlayer Shrink Film Film Micro-1 Micro-2 F9 50% Exact 3132 100%Westlake SC75858 50% Westlake SC75858 F10 50% Attane 4203 100% Dowlex 2045 50% Dowlex 2045 F11 100% 4203 60% Dowlex 2045 40% Dowlex 2037 F12 60% Dowlex 2045 50% Dowlex 2045 40% Affinity 11PF 1140G 50% Dowlex 2037 Internal Microlayers effect surface property Resin Type MI Density Dowlex 2045 O-LLDPE 1 0.92 Westlake SC75858 H-LLDPE 0.5 0.917 Dowlex 2037 MDPE 2.5 0.935 Attane 4203 VLDPE 0.8 0.907 Affinity PL 1881G VLDPE 1 0.906 Exact 3132 VLDPE 1.2 0.9 Affinity PF 1140G VLDPE 1.6 0.899
  • 47. Annular Conventional vs Microlayer Shrink Film F17, F18, and F19 contain Repro-1 •93% O-LLDPE •6% EVA •1% Additives Film Micro-1 Micro-2 F17 100% LLDPE 10% LLDPE 90% Repro-1 F18 60% LLDPE 20% LLDPE 40% Repro-1 80% Repro-1 F19 50% LLDPE 50% LLDPE 50% Repro-1 50% Repro-1 50% LLDPE 50% Repro
  • 48. 1. Microlayered film: • 50% thinner than conventional film • Equivalent physical properties 2. Layer sequencing microlayers creates I-beam effect which significantly improves physical properties 3. Less expensive material could be substituted without sacrificing performance 4. More reclaimed material can be added without sacrificing performance 5. Thinner layers of expensive material (EVOH, PA, Tie Resins) with equivalent barrier performance 6. To connect the dots: Commercial dual reactor ZN-LLDPE – used in microlayered film structures Annular Microlayered Shrink Film Conclusions
  • 50. • US Patent: 6,413,595, Schrimer, 2002 – Modular Disc Co-extrusion Die • US Patent: 8,870,561, Schirmer, 2014 – Layer Sequence Repeater Module (LSR) for the Modular Disc Co-Extrusion Die – Patents awarded • USA • Canada • Europe • China History & Design of the Annular Nanolayering Modular Disc Die
  • 51. • A Nanolayer is an order of magnitude thinner than a microlayer Microlayer vs Nanolayer Practical limit for Microlayer Practical limit of nanolayering is 100 times thinner than microlayering! Microns Mils 3 1.118 0.03 0.001Practical limit for Nanolayer
  • 52. Annular Nanolayering Film Technology Die Design • Modular Disc Die Design • Layer Sequence Repeater All Microlayers All Nanolayer
  • 53. • Nanoscale confinement demonstrates dramatic changes in crystallization • Confined crystallization of polymers leads to the formation of oriented lamellae in nanolayered films • The oriented lamellae increase the tortuitous pathway with increasing the lamellar orientation thereby improving the barrier performance • As the layer thicknesses approached a few nanometers, lamellar morphologies in HDPE layers resembled “single crystal” structures • Note: the results of nanolayering film depends on material used Nanolayering Mechanism Gas Barrier Properties
  • 54. Commercially Available Annular Nanolayer Blown Film Line Commercial 82 Layer Nanolayer Blown Film Line
  • 55. • Annular Nanolayer Die Technology commercially available • Annular Nanolayering technology provides equivalent or greater capabilities as compared to Microlayering technology – Microlayering is limited to 29 layers – Nanolayering is limited to greater than 29 layers • Microlayering/Nanolayering technology is applicable in the following film processes: – Blown Conventional, Double Bubble, Triple Bubble, Downward Water Quench – Cast Conventional, Round Cast (Downward Water Quench) – MDO – Tenter Frame Sequential, Simultaneous – Extrusion Coating, Laminations Annular Nanolayer Film Summary