With Hadoop-3.0.0-alpha2 being released in January 2017, it's time to have a closer look at the features and fixes of Hadoop 3.0.
We will have a look at Core Hadoop, HDFS and YARN, and answer the emerging question whether Hadoop 3.0 will be an architectural revolution like Hadoop 2 was with YARN & Co. or will it be more of an evolution adapting to new use cases like IoT, Machine Learning and Deep Learning (TensorFlow)?
Hadoop meets Agile! - An Agile Big Data ModelUwe Printz
The document proposes an Agile Big Data model to address perceived issues with traditional Hadoop implementations. It discusses the motivation for change and outlines an Agile model with self-organized roles including data stewards, data scientists, project teams, and an architecture board. Key aspects of the proposed model include independent and self-managed project teams, a domain-driven data model, and emphasis on data quality and governance through the involvement of data stewards across domains.
The document discusses backup and disaster recovery strategies for Hadoop. It focuses on protecting data sets stored in HDFS. HDFS uses data replication and checksums to protect against disk and node failures. Snapshots can protect against data corruption and accidental deletes. The document recommends copying data from the primary to secondary site for disaster recovery rather than teeing, and discusses considerations for large data movement like bandwidth needs and security. It also notes the importance of backing up metadata like Hive configurations along with core data.
This talk takes you on a rollercoaster ride through Hadoop 2 and explains the most significant changes and components.
The talk has been held on the JavaLand conference in Brühl, Germany on 25.03.2014.
Agenda:
- Welcome Office
- YARN Land
- HDFS 2 Land
- YARN App Land
- Enterprise Land
Hadoop Operations - Best practices from the fieldUwe Printz
Talk about Hadoop Operations and Best Practices for building and maintaining Hadoop cluster.
Talk was held at the data2day conference in Karlsruhe, Germany on 27.11.2014
The document discusses new features in Apache Hadoop 3, including HDFS erasure coding which reduces storage overhead, YARN federation which improves scalability, and the Application Timeline Server which provides improved visibility into application performance. It also covers HDFS multi standby NameNodes which enhances high availability, and the future directions of Hadoop including object storage with Ozone and running HDFS on cloud infrastructure.
Supporting Financial Services with a More Flexible Approach to Big DataWANdisco Plc
In this webinar, WANdisco and Hortonworks look at three examples of using 'Big Data' to get a more comprehensive view of customer behavior and activity in the banking and insurance industries. Then we'll pull out the common threads from these examples, and see how a flexible next-generation Hadoop architecture lets you get a step up on improving your business performance. Join us to learn:
- How to leverage data from across an entire global enterprise
- How to analyze a wide variety of structured and unstructured data to get quick, meaningful answers to critical questions
- What industry leaders have put in place
Hadoop and WANdisco: The Future of Big DataWANdisco Plc
View the webinar recording here... http://youtu.be/O1pgMMyoJg0
Who: WANdisco CEO, David Richards, and core creaters of Apache Hadoop, Dr. Konstantin Shvachko and Jagane Sundare.
What: WANdisco recently acquired AltoStor, a pioneering firm with deep expertise in the multi-billion dollar Big Data market.
New to the WANdisco team are the Hadoop core creaters, Dr. Konstantin Shvachko and Jagane Sundare. They will cover the the acquisition and reveal how WANdisco's active-active replication technology will change the game of Big Data for the enterprise in 2013.
Hadoop, a proven open source Big Data technolgoy, is the backbone of Yahoo, Facebook, Netflix, Amazon, Ebay and many of the world's largest databases.
When: Tuesday, December 11th at 10am PST (1pm EST).
Why: In this 30-minute webinar you’ll learn:
The staggering, cross-industry growth of Hadoop in the enterprise
How Hadoop's limitations, including HDFS's single-point of failure, are impacting the productivity of the enterprise
How WANdisco's active-active replication technology will alleviate these issues by adding high-availability to Hadoop, taking a fundamentally different approach to Big Data
View the webinar Q&A on the WANdisco blog here...http://blogs.wandisco.com/2012/12/14/answers-to-questions-from-the-webinar-of-dec-11-2012/
Bikas saha:the next generation of hadoop– hadoop 2 and yarnhdhappy001
The document discusses Apache YARN, which is the next-generation resource management platform for Apache Hadoop. YARN was designed to address limitations of the original Hadoop 1 architecture by supporting multiple data processing models (e.g. batch, interactive, streaming) and improving cluster utilization. YARN achieves this by separating resource management from application execution, allowing various data processing engines like MapReduce, HBase and Storm to run natively on Hadoop frames. This provides a flexible, efficient and shared platform for distributed applications.
Selective Data Replication with Geographically Distributed HadoopDataWorks Summit
This document discusses selective data replication with geographically distributed Hadoop. It describes running Hadoop across multiple data centers as a single cluster. A coordination engine ensures consistent metadata replication and a global sequence of updates. Data is replicated asynchronously over the WAN for fast ingestion. Selective data replication allows restricting replication of some data to specific locations for regulations, temporary data, or ingest-only use cases. Heterogeneous storage zones with different performance profiles can also be used for selective placement. This architecture aims to provide a single unified file system view, strict consistency, continuous availability, and geographic scalability across data centers.
Apache Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. The core of Hadoop consists of HDFS for storage and MapReduce for processing. Hadoop has been expanded with additional projects including YARN for job scheduling and resource management, Pig and Hive for SQL-like queries, HBase for column-oriented storage, Zookeeper for coordination, and Ambari for provisioning and managing Hadoop clusters. Hadoop provides scalable and cost-effective solutions for storing and analyzing massive amounts of data.
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using a simple programming model. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-avaiability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-availabile service on top of a cluster of computers, each of which may be prone to failures.
Keynote: Getting Serious about MySQL and Hadoop at ContinuentContinuent
Lean, mean MySQL and hulking Hadoop clusters may seem like an odd couple, but tying them together is now priority #1 for many MySQL users. This keynote talk on 1st day of this year's Percona Live MySQL Conference & Expo 2014 explores the data management trends spurring integration, how the MySQL community is stepping up, and where the integration may go in the future. Robert Hodges, CEO at Continuent, outlines how work at Continuent fits into this picture and how we are contributing to the MySQL community response to Hadoop.
This talk gives an introduction into Hadoop 2 and YARN. Then the changes for MapReduce 2 are explained. Finally Tez and Spark are explained and compared in detail.
The talk has been held on the Parallel 2014 conference in Karlsruhe, Germany on 06.05.2014.
Agenda:
- Introduction to Hadoop 2
- MapReduce 2
- Tez, Hive & Stinger Initiative
- Spark
This document discusses modern data architecture and Apache Hadoop's role within it. It presents WANdisco and its Non-Stop Hadoop solution, which extends HDFS across multiple data centers to provide 100% uptime for Hadoop deployments. Non-Stop Hadoop uses WANdisco's patented distributed coordination engine to synchronize HDFS metadata across sites separated by wide area networks, enabling continuous availability of HDFS data and global HDFS deployments.
This document discusses loading data from Hadoop into Oracle databases using Oracle connectors. It describes how the Oracle Loader for Hadoop and Oracle SQL Connector for HDFS can load data from HDFS into Oracle tables much faster than traditional methods like Sqoop by leveraging parallel processing in Hadoop. The connectors optimize the loading process by automatically partitioning, sorting, and formatting the data into Oracle blocks to achieve high performance loads. Measuring the CPU time needed per gigabyte loaded allows estimating how long full loads will take based on available resources.
The document provides an overview of Hadoop and its ecosystem. It discusses the history and architecture of Hadoop, describing how it uses distributed storage and processing to handle large datasets across clusters of commodity hardware. The key components of Hadoop include HDFS for storage, MapReduce for processing, and additional tools like Hive, Pig, HBase, Zookeeper, Flume, Sqoop and Oozie that make up its ecosystem. Advantages are its ability to handle unlimited data storage and high speed processing, while disadvantages include lower speeds for small datasets and limitations on data storage size.
Big Data Meets HPC - Exploiting HPC Technologies for Accelerating Big Data Pr...inside-BigData.com
In this deck from the Stanford HPC Conference, DK Panda from Ohio State University presents: Big Data Meets HPC - Exploiting HPC Technologies for Accelerating Big Data Processing.
"This talk will provide an overview of challenges in accelerating Hadoop, Spark and Memcached on modern HPC clusters. An overview of RDMA-based designs for Hadoop (HDFS, MapReduce, RPC and HBase), Spark, Memcached, Swift, and Kafka using native RDMA support for InfiniBand and RoCE will be presented. Enhanced designs for these components to exploit NVM-based in-memory technology and parallel file systems (such as Lustre) will also be presented. Benefits of these designs on various cluster configurations using the publicly available RDMA-enabled packages from the OSU HiBD project (http://hibd.cse.ohio-state.edu) will be shown."
Watch the video: https://youtu.be/iLTYkTandEA
Learn more: http://web.cse.ohio-state.edu/~panda.2/
and
http://hpcadvisorycouncil.com
Sign up for our insideHPC Newsletter: http://insidehpc.com/newsletter
The document summarizes a technical seminar on Hadoop. It discusses Hadoop's history and origin, how it was developed from Google's distributed systems, and how it provides an open-source framework for distributed storage and processing of large datasets. It also summarizes key aspects of Hadoop including HDFS, MapReduce, HBase, Pig, Hive and YARN, and how they address challenges of big data analytics. The seminar provides an overview of Hadoop's architecture and ecosystem and how it can effectively process large datasets measured in petabytes.
This document summarizes a presentation about new features in Apache Hadoop 3.0 related to YARN and MapReduce. It discusses major evolutions like the re-architecture of the YARN Timeline Service (ATS) to address scalability, usability, and reliability limitations. Other evolutions mentioned include improved support for long-running native services in YARN, simplified REST APIs, service discovery via DNS, scheduling enhancements, and making YARN more cloud-friendly with features like dynamic resource configuration and container resizing. The presentation estimates the timeline for Apache Hadoop 3.0 releases with alpha, beta, and general availability targeted throughout 2017.
The slides are created for the "Hadoop User Group Vienna", a Meetup that gathers Hadoop users in Vienna on September 6, 2017. The content of the slides correspond to the first talk, which discussed the concepts, terminology and disaster recovery capabilities in the Hadoop ecosystem.
Deep learning has become widespread as frameworks such as TensorFlow and PyTorch have made it easy to onboard machine learning applications. However, while it is easy to start developing with these frameworks on your local developer machine, scaling up a model to run on a cluster and train on huge datasets is still challenging. Code and dependencies have to be copied to every machine and defining the cluster configurations is tedious and error-prone. In addition, troubleshooting errors and aggregating logs is difficult. Ad-hoc solutions also lack resource guarantees, isolation from other jobs, and fault tolerance.
To solve these problems and make scaling deep learning easy, we have made several enhancements to Hadoop and built an open-source deep learning platform called TonY. In this talk, Anthony and Keqiu will discuss new Hadoop features useful for deep learning, such as GPU resource support, and deep dive into TonY, which lets you run deep learning programs natively on Hadoop. We will discuss TonY's architecture and how it allows users to manage their deep learning jobs, acting as a portal from which to launch notebooks, monitor jobs, and visualize training results.
From: DataWorks Summit Munich 2017 - 20170406
While you could be tempted assuming data is already safe in a single Hadoop cluster, in practice you have to plan for more. Questions like: "What happens if the entire datacenter fails?, or "How do I recover into a consistent state of data, so that applications can continue to run?" are not a all trivial to answer for Hadoop. Did you know that HDFS snapshots are handling open files not as immutable? Or that HBase snapshots are executed asynchronously across servers and therefore cannot guarantee atomicity for cross region updates (which includes tables)? There is no unified and coherent data backup strategy, nor is there tooling available for many of the included components to build such a strategy. The Hadoop distributions largely avoid this topic as most customers are still in the "single use-case" or PoC phase, where data governance as far as backup and disaster recovery (BDR) is concerned are not (yet) important. This talk first is introducing you to the overarching issue and difficulties of backup and data safety, looking at each of the many components in Hadoop, including HDFS, HBase, YARN, Oozie, the management components and so on, to finally show you a viable approach using built-in tools. You will also learn not to take this topic lightheartedly and what is needed to implement and guarantee a continuous operation of Hadoop cluster based solutions.
Hadoop Operations - Best Practices from the FieldDataWorks Summit
This document discusses best practices for Hadoop operations based on analysis of support cases. Key learnings include using HDFS ACLs and snapshots to prevent accidental data deletion and improve recoverability. HDFS improvements like pausing block deletion and adding diagnostics help address incidents around namespace mismatches and upgrade failures. Proper configuration of hardware, JVM settings, and monitoring is also emphasized.
This document proposes a design for tiered storage in HDFS that allows data to be stored in heterogeneous storage tiers including an external storage system. It describes challenges in synchronizing metadata and data across clusters and proposes using HDFS to coordinate an external storage system in a transparent way to users. The "PROVIDED" storage type would allow blocks to be retrieved directly from the external store via aliases, handling data consistency and security while leveraging HDFS features like quotas and replication policies. Implementation would start with read-only support and progress to full read-write capabilities.
Top Hadoop Big Data Interview Questions and Answers for FresherJanBask Training
Top Hadoop Big Data Interview Questions and Answers for Fresher , Hadoop, Hadoop Big Data, Hadoop Training, Hadoop Interview Question, Hadoop Interview Answers, Hadoop Big Data Interview Question
This document provides information about Hadoop and its components. It discusses the history of Hadoop and how it has evolved over time. It describes key Hadoop components including HDFS, MapReduce, YARN, and HBase. HDFS is the distributed file system of Hadoop that stores and manages large datasets across clusters. MapReduce is a programming model used for processing large datasets in parallel. YARN is the cluster resource manager that allocates resources to applications. HBase is the Hadoop database that provides real-time random data access.
This document discusses Hadoop, an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It describes how Hadoop uses HDFS for scalable, fault-tolerant storage and MapReduce for parallel processing. The core components of Hadoop - HDFS and MapReduce - allow for distributed processing of large datasets across commodity hardware, providing capabilities for scalability, cost-effectiveness, and efficient distributed computing.
Supporting Financial Services with a More Flexible Approach to Big DataWANdisco Plc
In this webinar, WANdisco and Hortonworks look at three examples of using 'Big Data' to get a more comprehensive view of customer behavior and activity in the banking and insurance industries. Then we'll pull out the common threads from these examples, and see how a flexible next-generation Hadoop architecture lets you get a step up on improving your business performance. Join us to learn:
- How to leverage data from across an entire global enterprise
- How to analyze a wide variety of structured and unstructured data to get quick, meaningful answers to critical questions
- What industry leaders have put in place
Hadoop and WANdisco: The Future of Big DataWANdisco Plc
View the webinar recording here... http://youtu.be/O1pgMMyoJg0
Who: WANdisco CEO, David Richards, and core creaters of Apache Hadoop, Dr. Konstantin Shvachko and Jagane Sundare.
What: WANdisco recently acquired AltoStor, a pioneering firm with deep expertise in the multi-billion dollar Big Data market.
New to the WANdisco team are the Hadoop core creaters, Dr. Konstantin Shvachko and Jagane Sundare. They will cover the the acquisition and reveal how WANdisco's active-active replication technology will change the game of Big Data for the enterprise in 2013.
Hadoop, a proven open source Big Data technolgoy, is the backbone of Yahoo, Facebook, Netflix, Amazon, Ebay and many of the world's largest databases.
When: Tuesday, December 11th at 10am PST (1pm EST).
Why: In this 30-minute webinar you’ll learn:
The staggering, cross-industry growth of Hadoop in the enterprise
How Hadoop's limitations, including HDFS's single-point of failure, are impacting the productivity of the enterprise
How WANdisco's active-active replication technology will alleviate these issues by adding high-availability to Hadoop, taking a fundamentally different approach to Big Data
View the webinar Q&A on the WANdisco blog here...http://blogs.wandisco.com/2012/12/14/answers-to-questions-from-the-webinar-of-dec-11-2012/
Bikas saha:the next generation of hadoop– hadoop 2 and yarnhdhappy001
The document discusses Apache YARN, which is the next-generation resource management platform for Apache Hadoop. YARN was designed to address limitations of the original Hadoop 1 architecture by supporting multiple data processing models (e.g. batch, interactive, streaming) and improving cluster utilization. YARN achieves this by separating resource management from application execution, allowing various data processing engines like MapReduce, HBase and Storm to run natively on Hadoop frames. This provides a flexible, efficient and shared platform for distributed applications.
Selective Data Replication with Geographically Distributed HadoopDataWorks Summit
This document discusses selective data replication with geographically distributed Hadoop. It describes running Hadoop across multiple data centers as a single cluster. A coordination engine ensures consistent metadata replication and a global sequence of updates. Data is replicated asynchronously over the WAN for fast ingestion. Selective data replication allows restricting replication of some data to specific locations for regulations, temporary data, or ingest-only use cases. Heterogeneous storage zones with different performance profiles can also be used for selective placement. This architecture aims to provide a single unified file system view, strict consistency, continuous availability, and geographic scalability across data centers.
Apache Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. The core of Hadoop consists of HDFS for storage and MapReduce for processing. Hadoop has been expanded with additional projects including YARN for job scheduling and resource management, Pig and Hive for SQL-like queries, HBase for column-oriented storage, Zookeeper for coordination, and Ambari for provisioning and managing Hadoop clusters. Hadoop provides scalable and cost-effective solutions for storing and analyzing massive amounts of data.
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using a simple programming model. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-avaiability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-availabile service on top of a cluster of computers, each of which may be prone to failures.
Keynote: Getting Serious about MySQL and Hadoop at ContinuentContinuent
Lean, mean MySQL and hulking Hadoop clusters may seem like an odd couple, but tying them together is now priority #1 for many MySQL users. This keynote talk on 1st day of this year's Percona Live MySQL Conference & Expo 2014 explores the data management trends spurring integration, how the MySQL community is stepping up, and where the integration may go in the future. Robert Hodges, CEO at Continuent, outlines how work at Continuent fits into this picture and how we are contributing to the MySQL community response to Hadoop.
This talk gives an introduction into Hadoop 2 and YARN. Then the changes for MapReduce 2 are explained. Finally Tez and Spark are explained and compared in detail.
The talk has been held on the Parallel 2014 conference in Karlsruhe, Germany on 06.05.2014.
Agenda:
- Introduction to Hadoop 2
- MapReduce 2
- Tez, Hive & Stinger Initiative
- Spark
This document discusses modern data architecture and Apache Hadoop's role within it. It presents WANdisco and its Non-Stop Hadoop solution, which extends HDFS across multiple data centers to provide 100% uptime for Hadoop deployments. Non-Stop Hadoop uses WANdisco's patented distributed coordination engine to synchronize HDFS metadata across sites separated by wide area networks, enabling continuous availability of HDFS data and global HDFS deployments.
This document discusses loading data from Hadoop into Oracle databases using Oracle connectors. It describes how the Oracle Loader for Hadoop and Oracle SQL Connector for HDFS can load data from HDFS into Oracle tables much faster than traditional methods like Sqoop by leveraging parallel processing in Hadoop. The connectors optimize the loading process by automatically partitioning, sorting, and formatting the data into Oracle blocks to achieve high performance loads. Measuring the CPU time needed per gigabyte loaded allows estimating how long full loads will take based on available resources.
The document provides an overview of Hadoop and its ecosystem. It discusses the history and architecture of Hadoop, describing how it uses distributed storage and processing to handle large datasets across clusters of commodity hardware. The key components of Hadoop include HDFS for storage, MapReduce for processing, and additional tools like Hive, Pig, HBase, Zookeeper, Flume, Sqoop and Oozie that make up its ecosystem. Advantages are its ability to handle unlimited data storage and high speed processing, while disadvantages include lower speeds for small datasets and limitations on data storage size.
Big Data Meets HPC - Exploiting HPC Technologies for Accelerating Big Data Pr...inside-BigData.com
In this deck from the Stanford HPC Conference, DK Panda from Ohio State University presents: Big Data Meets HPC - Exploiting HPC Technologies for Accelerating Big Data Processing.
"This talk will provide an overview of challenges in accelerating Hadoop, Spark and Memcached on modern HPC clusters. An overview of RDMA-based designs for Hadoop (HDFS, MapReduce, RPC and HBase), Spark, Memcached, Swift, and Kafka using native RDMA support for InfiniBand and RoCE will be presented. Enhanced designs for these components to exploit NVM-based in-memory technology and parallel file systems (such as Lustre) will also be presented. Benefits of these designs on various cluster configurations using the publicly available RDMA-enabled packages from the OSU HiBD project (http://hibd.cse.ohio-state.edu) will be shown."
Watch the video: https://youtu.be/iLTYkTandEA
Learn more: http://web.cse.ohio-state.edu/~panda.2/
and
http://hpcadvisorycouncil.com
Sign up for our insideHPC Newsletter: http://insidehpc.com/newsletter
The document summarizes a technical seminar on Hadoop. It discusses Hadoop's history and origin, how it was developed from Google's distributed systems, and how it provides an open-source framework for distributed storage and processing of large datasets. It also summarizes key aspects of Hadoop including HDFS, MapReduce, HBase, Pig, Hive and YARN, and how they address challenges of big data analytics. The seminar provides an overview of Hadoop's architecture and ecosystem and how it can effectively process large datasets measured in petabytes.
This document summarizes a presentation about new features in Apache Hadoop 3.0 related to YARN and MapReduce. It discusses major evolutions like the re-architecture of the YARN Timeline Service (ATS) to address scalability, usability, and reliability limitations. Other evolutions mentioned include improved support for long-running native services in YARN, simplified REST APIs, service discovery via DNS, scheduling enhancements, and making YARN more cloud-friendly with features like dynamic resource configuration and container resizing. The presentation estimates the timeline for Apache Hadoop 3.0 releases with alpha, beta, and general availability targeted throughout 2017.
The slides are created for the "Hadoop User Group Vienna", a Meetup that gathers Hadoop users in Vienna on September 6, 2017. The content of the slides correspond to the first talk, which discussed the concepts, terminology and disaster recovery capabilities in the Hadoop ecosystem.
Deep learning has become widespread as frameworks such as TensorFlow and PyTorch have made it easy to onboard machine learning applications. However, while it is easy to start developing with these frameworks on your local developer machine, scaling up a model to run on a cluster and train on huge datasets is still challenging. Code and dependencies have to be copied to every machine and defining the cluster configurations is tedious and error-prone. In addition, troubleshooting errors and aggregating logs is difficult. Ad-hoc solutions also lack resource guarantees, isolation from other jobs, and fault tolerance.
To solve these problems and make scaling deep learning easy, we have made several enhancements to Hadoop and built an open-source deep learning platform called TonY. In this talk, Anthony and Keqiu will discuss new Hadoop features useful for deep learning, such as GPU resource support, and deep dive into TonY, which lets you run deep learning programs natively on Hadoop. We will discuss TonY's architecture and how it allows users to manage their deep learning jobs, acting as a portal from which to launch notebooks, monitor jobs, and visualize training results.
From: DataWorks Summit Munich 2017 - 20170406
While you could be tempted assuming data is already safe in a single Hadoop cluster, in practice you have to plan for more. Questions like: "What happens if the entire datacenter fails?, or "How do I recover into a consistent state of data, so that applications can continue to run?" are not a all trivial to answer for Hadoop. Did you know that HDFS snapshots are handling open files not as immutable? Or that HBase snapshots are executed asynchronously across servers and therefore cannot guarantee atomicity for cross region updates (which includes tables)? There is no unified and coherent data backup strategy, nor is there tooling available for many of the included components to build such a strategy. The Hadoop distributions largely avoid this topic as most customers are still in the "single use-case" or PoC phase, where data governance as far as backup and disaster recovery (BDR) is concerned are not (yet) important. This talk first is introducing you to the overarching issue and difficulties of backup and data safety, looking at each of the many components in Hadoop, including HDFS, HBase, YARN, Oozie, the management components and so on, to finally show you a viable approach using built-in tools. You will also learn not to take this topic lightheartedly and what is needed to implement and guarantee a continuous operation of Hadoop cluster based solutions.
Hadoop Operations - Best Practices from the FieldDataWorks Summit
This document discusses best practices for Hadoop operations based on analysis of support cases. Key learnings include using HDFS ACLs and snapshots to prevent accidental data deletion and improve recoverability. HDFS improvements like pausing block deletion and adding diagnostics help address incidents around namespace mismatches and upgrade failures. Proper configuration of hardware, JVM settings, and monitoring is also emphasized.
This document proposes a design for tiered storage in HDFS that allows data to be stored in heterogeneous storage tiers including an external storage system. It describes challenges in synchronizing metadata and data across clusters and proposes using HDFS to coordinate an external storage system in a transparent way to users. The "PROVIDED" storage type would allow blocks to be retrieved directly from the external store via aliases, handling data consistency and security while leveraging HDFS features like quotas and replication policies. Implementation would start with read-only support and progress to full read-write capabilities.
Top Hadoop Big Data Interview Questions and Answers for FresherJanBask Training
Top Hadoop Big Data Interview Questions and Answers for Fresher , Hadoop, Hadoop Big Data, Hadoop Training, Hadoop Interview Question, Hadoop Interview Answers, Hadoop Big Data Interview Question
This document provides information about Hadoop and its components. It discusses the history of Hadoop and how it has evolved over time. It describes key Hadoop components including HDFS, MapReduce, YARN, and HBase. HDFS is the distributed file system of Hadoop that stores and manages large datasets across clusters. MapReduce is a programming model used for processing large datasets in parallel. YARN is the cluster resource manager that allocates resources to applications. HBase is the Hadoop database that provides real-time random data access.
This document discusses Hadoop, an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It describes how Hadoop uses HDFS for scalable, fault-tolerant storage and MapReduce for parallel processing. The core components of Hadoop - HDFS and MapReduce - allow for distributed processing of large datasets across commodity hardware, providing capabilities for scalability, cost-effectiveness, and efficient distributed computing.
The document provides an overview of Hadoop, including:
- A brief history of Hadoop and its origins from Google and Apache projects
- An explanation of Hadoop's architecture including HDFS, MapReduce, JobTracker, TaskTracker, and DataNodes
- Examples of how large companies like Yahoo, Facebook, and Amazon use Hadoop for applications like log processing, searches, and advertisement targeting
The document provides an overview of Hadoop, including:
- A brief history of Hadoop and its origins at Google and Yahoo
- An explanation of Hadoop's architecture including HDFS, MapReduce, JobTracker, TaskTracker, and DataNodes
- Examples of how large companies like Facebook and Amazon use Hadoop to process massive amounts of data
If you are search Best Engineering college in India, Then you can trust RCE (Roorkee College of Engineering) services and facilities. They provide the best education facility, highly educated and experienced faculty, well furnished hostels for both boys and girls, top computerized Library, great placement opportunity and more at affordable fee.
hadoop distributed file systems complete informationbhargavi804095
The document provides an overview of the Hadoop Distributed File System (HDFS). It discusses that HDFS is the storage unit of Hadoop and relies on distributed file system principles. It has a master-slave architecture with the NameNode as the master and DataNodes as slaves. HDFS allows files to be broken into blocks which are replicated across DataNodes for fault tolerance. The document outlines the key components of HDFS and how read and write operations work in HDFS.
The document discusses the Hadoop and MapReduce architecture. It provides an overview of key components of Hadoop including HDFS, YARN, MapReduce, Pig, Hive, and Spark. It describes how HDFS stores and manages large datasets across clusters and how MapReduce allows distributed processing of large datasets through mapping and reducing functions. The document also provides examples of how MapReduce can be used to analyze large datasets like tweets processed by Twitter.
* The file size is 1664MB
* HDFS block size is usually 128MB by default in Hadoop 2.0
* To calculate number of blocks required: File size / Block size
* 1664MB / 128MB = 13 blocks
* 8 blocks have been uploaded successfully
* So remaining blocks = Total blocks - Uploaded blocks = 13 - 8 = 5
If another client tries to access/read the data while the upload is still in progress, it will only be able to access the data from the 8 blocks that have been uploaded so far. The remaining 5 blocks of data will not be available or visible to other clients until the full upload is completed. HDFS follows write-once semantics, so partial
We Provide Hadoop training institute in Hyderabad and Bangalore with corporate training by 12+ Experience faculty.
Real-time industry experts from MNCs
Resume Preparation by expert Professionals
Lab exercises
Interview Preparation
Experts advice
http://www.learntek.org/product/big-data-and-hadoop/
http://www.learntek.org
Learntek is global online training provider on Big Data Analytics, Hadoop, Machine Learning, Deep Learning, IOT, AI, Cloud Technology, DEVOPS, Digital Marketing and other IT and Management courses. We are dedicated to designing, developing and implementing training programs for students, corporate employees and business professional.
Hadoop is an open-source framework for distributed storage and processing of large datasets across clusters of commodity hardware. It has several core components including HDFS for distributed file storage and MapReduce for distributed processing. HDFS stores data across clusters of machines with replication for fault tolerance. MapReduce allows parallel processing of large datasets in a distributed manner. Hadoop was designed with goals of using commodity hardware, easy recovery from failures, large distributed file systems, and fast processing of large datasets.
The current major release, Hadoop 2.0 offers several significant HDFS improvements including new append-pipeline, federation, wire compatibility, NameNode HA, Snapshots, and performance improvements. We describe how to take advantages of these new features and their benefits. We cover some architectural improvements in detail such as HA, Federation and Snapshots. The second half of the talk describes the current features that are under development for the next HDFS release. This includes much needed data management features such as backup and Disaster Recovery. We add support for different classes of storage devices such as SSDs and open interfaces such as NFS; together these extend HDFS as a more general storage system. Hadoop has recently been extended to run first-class on Windows which expands its enterprise reach and allows integration with the rich tool-set available on Windows. As with every release we will continue improvements to performance, diagnosability and manageability of HDFS. To conclude, we discuss the reliability, the state of HDFS adoption, and some of the misconceptions and myths about HDFS.
Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It has four main modules - Hadoop Common, HDFS, YARN and MapReduce. HDFS provides a distributed file system that stores data reliably across commodity hardware. MapReduce is a programming model used to process large amounts of data in parallel. Hadoop architecture uses a master-slave model, with a NameNode master and DataNode slaves. It provides fault tolerance, high throughput access to application data and scales to thousands of machines.
Tcloud Computing Hadoop Family and Ecosystem Service 2013.Q2tcloudcomputing-tw
The presentation is designed for those interested in Hadoop technology, and can enhance your knowledge in Hadoop, such as community history, current development status, features of services, distributed computing framework and scenario of big data development in Enterprise.
Hadoop is an open source software framework that allows for distributed processing of large data sets across clusters of computers. It uses MapReduce as a programming model and HDFS for storage. Hadoop supports various big data applications like HBase for distributed column storage, Hive for data warehousing and querying, Pig and Jaql for data flow languages, and Hadoop ecosystem projects for tasks like system monitoring and machine learning.
The document provides an overview of big data and Hadoop fundamentals. It discusses what big data is, the characteristics of big data, and how it differs from traditional data processing approaches. It then describes the key components of Hadoop including HDFS for distributed storage, MapReduce for distributed processing, and YARN for resource management. HDFS architecture and features are explained in more detail. MapReduce tasks, stages, and an example word count job are also covered. The document concludes with a discussion of Hive, including its use as a data warehouse infrastructure on Hadoop and its query language HiveQL.
The document provides an introduction to big data and Hadoop. It defines big data as large datasets that are difficult to process using traditional software tools due to their size and complexity. It describes the characteristics of big data using the original 3Vs model (volume, velocity, variety) as well as additional attributes. The text then explains the architecture and components of Hadoop, the open-source framework for distributed storage and processing of big data, including HDFS, MapReduce, and other related tools. It provides an overview of how Hadoop addresses the challenges of big data through scalable and fault-tolerant distributed processing of data across commodity hardware.
Fundamentals of Big Data, Hadoop project design and case study or Use case
General planning consideration and most necessaries in Hadoop ecosystem and Hadoop projects
This will provide the basis for choosing the right Hadoop implementation, Hadoop technologies integration, adoption and creating an infrastructure.
Building applications using Apache Hadoop with a use-case of WI-FI log analysis has real life example.
computer organization and assembly language : its about types of programming language along with variable and array description..https://www.nfciet.edu.pk/
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
19. Hadoop Distributed File System
Data Model:
• Data is organized into files and directories
• Files are divided into uniformly-sized blocks and
distributed across cluster nodes
• Blocks are replicated to handle hardware failure
• Filesystem keeps checksums of data for corruption
detection and recovery
• Read requests are always served from closest replica
• Not strictly POSIX-compliant
32. • Programming model processing list of key/value pairs
• Map function: processes input key/value pairs and produces set of
intermediate key/value pairs.
• Reduce function: merges all intermediate values associated with the same
intermediate key and produces output key/value pairs.
Map-Reduce Programming Model
Input
(k1, v1)
Output
K2, List(V3)
Intermediate
Output
List (K2, V2)
Reduce
Sort or Group by K2
(K2, List(V2))
Map
33. Application Writer Specifies:
• Map and Reduce classes
• Input data on HDFS
• Input/Output format classes (optional)
Workflow:
• Input phase generates a number of logical FileSplits from input files
• One Map task is created per logical file split
• Each Map task loads Map class and executes map function to transform
input kv-pairs into a new set of kv-pairs
• Record reader class supplied part of InputFormat reads a input record
as k-v pair
• Map output keys are stored on local disk in sorted partitions, one per
task
• One invocation of map function per k-v pair from an associated input
split
• Each Reduce task fetches map output (from its associated partition) as
soon as map task finishes its processing
• Map outputs are merged
• One invocation of reduce function per distinct key and its associated
list of values
• Output k-v pairs are stored on HDFS, one file per reduce task
• Framework handles task scheduling and recovery.
Km+1…N
Output
Part-0
Output
Part-1
Input
Split 0
Input HDFS File
K1..m K1..mK1..m Km+1…N Km+1…N
Sorted Partitions
Map 0 Map 1 Map 2
Sorted Partitions Sorted Partitions
Reduce 0 Reduce 1
Shuffle
Input
Split 2
Input
Split 1
Merge & Sort Merge & Sort
Parallel Execution Model for Map-Reduce
Km+1…N