SlideShare a Scribd company logo
Apache Hudi: The Path Forward
Vinoth Chandar, Raymond Xu
PMC, Apache Hudi
Agenda
1) Hudi Intro
2) Table Metadata
3) Caching
4) Community
Hudi Intro
Components, Evolution
Typical Use-Cases
Hudi - the Pioneer
Serverless, transactional layer over
lakes.
Multi-engine, Decoupled storage
from engine/compute
Introduced notions of
Copy-On-Write and
Merge-on-Read
Change capture on lakes
Ideas now heavily borrowed
outside.
The Hudi Stack
Lakes on cheap, scalable Hadoop compatible storage
Built on open file and data formats
Transactional Database Kernel
- Table Format for file layouts, schema, …
- Indexing for faster updates/deletes
- Built-in “daemons” aka table services
- MVCC, OCC Concurrency Control
SQL and Programming APIs
Platform services and operational tools
Universally queryable from popular engines
It’s a platform!
Both streaming + batch style pipelines
- State store for incremental merging intermediate results
- Change events like Apache Kafka topics
For data lake workloads
- Optimized, self-managing data plane
- Large scale data processing
- Lakehouse?
With tightly-integrated components
- Loose coupling => too many to integrate
- Reduce build out time for data lakes
http://hudi.apache.org/blog/2021/07/21/streaming-data-lake-platform
Table Format
Avro Schema, Evolution rules
File groups, reduce merge overhead
Timeline => event log, WAL
Internal metadata table
Ongoing
- Schema-on-read i.e
drop,renames (RFC-33)
- Infinite retention
File Formats
Base and Delta Log Files
- Parquet, Orc, HFile Base files
- Avro log files
- Encode changes as blocks
Ongoing
- Parquet log blocks for large
batch writes
- CSV, unstructured formats
- pre-materialization for
masking/data privacy
Indexes
Pluggable, Consistent with txns
For upserts, deletes
- HBase, External index ->
pluggable
- Simple, Bloom/Local vs Global
Ongoing
- RFC-27 Range indexes
- Bucketed Index
- DynamoDB index
- Metadata index
- Record level indexing
Concurrency Control
Hudi did not need multi-writer support
- Treat writers and services differently
- MVCC, non-blocking
- Table services satisfy most needs
Hudi now does Optimistic Concurrency Control
- File level, timeline consistent
- Still MVCC for table services
Future/Ongoing
- Multi-table transactions
- MVCC, fully lock free transactions
Writers
Incremental & Batch write operations
- File sizing, Layout control upon write
- Sorting, compression, Index maintenance
- Spill handling, Multi-threaded write pipeline
Record level merges APIs
- Unique keys, composite,
- key generators, virtual or physical
- partial merges, event-time processing
Record level metadata
- Arrival and event time, watermarks
- Encode source CDC operation
Readers
Hive, Impala, Presto, Spark, Trino, Redshift
Use engine’s native readers
First class support for incremental queries
Flexibility - snapshot vs read-optimized
Future
- Flexible change stream data models.
- Snowflake/BigQuery external tables
Table Services
Self managing database runtime
Table services know each other
- E.g avoid duplicate schedules
- E.g skip compacting files being clustered
Cleaning (committed/uncommitted), archival,
clustering, compaction, ..
Services can be run continuously or scheduled
Platform Services
DeltaStreamer/FlinkStreamer
ingest/ETL utility
Deliver Commit notifications
Kafka Connect Sink
Data Quality checkers
Snapshot, Restore, Export, Import
Table Metadata
Current choices, Ongoing work, Future plans
What qualifies as table metadata?
Schema - Columns names/types, keys, partitioning, evolution/versions
- Typically small, < 1MB per version.
Files/Objects - Length, paths, URIs
- 2M objects => 10s of MBs
Stats - Min, Max, Nulls etc, Per col Per file
- 2M objects => 100+ of MBs
Redo Logs - Changes to metadata => writes, rollbacks, table optimizations.
- Committing (200kb) every minute for a year => ~100 GB
Indexes? - Remember Stats != Index, They can be much bigger.
How’s this stored in Hudi, today?
Schema - Stored within the redo log, consistent with table changes.
- Synced out to different meta-stores, post commit
Files/Objects - Obtained from an internal metadata table partition `files`
- Or just by listing storage - sometimes it’s faster!
Redo Logs - As an event log in the timeline folder “.hoodie”
- Archived out, once transactions/table operations complete/expire.
Stats - We don’t. Yet. Fetch from file footers.
- Again sometimes faster if parallelized, even on cloud storage.
RFC-27 (Ongoing): Flat Files are not cool
Scaling file stats for high scale writing
- 65536 files (1TB data, stored as 16MB
small files)
- 100 columns, 6.5M stat entries
- O(total_cols_tracked_in_table)
- Slow, 10s of seconds.
Range reads to the rescue!
- O(num_cols_in_query) performace
- Interval trees with smart skipping
The Hudi Timeline server
Metadata need efficient serving, caching
- Not just efficient storage
Responsibilities
- Cache file listings across executors
- Amortize access to metadata table
- Performant uncommitted file
cleanup
Incremental sync
- Streaming/continuous writes
- Lazy refreshing of timeline
S3 Baseline: listing p90
- 1sec (10k files),
- 10 sec (100K files)
Timeline Server: 1-10 ms!
File-backed metadata: ~1 second!
Extending the Timeline Server
New APIs
- Serve also stats, redo log information.
- Locking APIs
Let’s make a cluster!
- Shard servers by table/db
- Pluggable backing storage
- Local DB w/ recovery/checkpointing
- Remote DB with
newSQL/transactional storage
Cache
Basic Idea, Design Considerations
Basic Idea
Problems
- Frequent commits => small objects /
blocks => I/O costly
- File System / Block level caching not
very effective
base file b @ t1
base file b’ @ t2
log file 1 for b
log file 2 for b
log file 1 for b’
log file 2 for b’
Time
Hudi FileGroup
log file 3 for b’
Hudi FileGroup fits caching
- Smallest unit to compact
- Size properly to fit cache store
- Cache compacted data for
real-time views => save
computation
Design Considerations
Refresh-Ahead
- Works with Change-Data-Capture
scenario
- Micro-compact FileGroup and save in
cache
Cache
base file b
log file 1 for b
log file 2 for b
compacted
Change-Data-Capture
Refresh-Ahead
Read-Through
- Driven by usage, on-demand
computation
- LRU or LFU
Query I/O
Read-Through
Design Considerations
FileGroup consistent hashing
- Each FileGroup has a unique ID
- Work with distributed cache servers
Cache
Node A
FileGroup
Query I/O
Cache
Node B
FileGroup FileGroup
Coordinator
(Timeline server?)
Query I/O
Lake Storage
Cache (e.g. Alluxio)
Transactionality
- Only committed files can be
cached
- Rollback include cache
invalidation
Pluggable Caching Layer
- Define APIs for pluggable
caching implementations
Community
Adoption, Operating the Apache way, Ongoing work
How we roll?
Friendly and diverse community
- Open and Collaborative
- 20+ PMCs/Committers from 10+
organizations
Developers
- Propose new RFCs (design docs)
- Dev list discussions, JIRA for issue tracking.
Users
- Weekly community on-call rotations
- Issue triage, bug filing process on Github
1200+
Slack
200+
Contributors
1000+
GH Engagers
~10-20
PRs/week
20+
Committers
10+
PMCs
Major Ongoing Works
RFC-26: Z-order indexing, Hilbert curves (PR #3330)
RFC-27: Data skipping/Range indexing (PR #3475)
RFC-29: Hashed Indexing (PR #3173)
RFC-32: Kafka Connect Sink for Hudi (Pre-release; available in 0.10.0)
RFC-33: Full-schema evolution support (PR #3668)
RFC-35: BigQuery integration
Major Ongoing Works
RFC-20: Error tables (PR #3312)
RFC-08: Record level indexing (PR #3508)
RFC-15: Synchronous, Multi table Metadata writes (PR #3590)
Hudi + Dbt (dbt-labs/dbt-spark/pull/210)
PrestoDB/Trino Connectors (Early design)
Hudi is broadly adopted outside
More at : http://hudi.apache.org/powered-by
Engage With Our Community
User Docs : https://hudi.apache.org
Technical Wiki : https://cwiki.apache.org/confluence/display/HUDI
Github : https://github.com/apache/hudi/
Twitter : https://twitter.com/apachehudi
Mailing list(s) : dev-subscribe@hudi.apache.org (send an empty email to subscribe)
dev@hudi.apache.org (actual mailing list)
Slack : https://join.slack.com/t/apache-hudi/signup
Thanks!
Questions?
Ad

More Related Content

What's hot (20)

Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
HostedbyConfluent
 
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
Chester Chen
 
Apache Kudu: Technical Deep Dive


Apache Kudu: Technical Deep Dive

Apache Kudu: Technical Deep Dive


Apache Kudu: Technical Deep Dive


Cloudera, Inc.
 
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Transactional operations in Apache Hive: present and future
Transactional operations in Apache Hive: present and futureTransactional operations in Apache Hive: present and future
Transactional operations in Apache Hive: present and future
DataWorks Summit
 
How to build a streaming Lakehouse with Flink, Kafka, and Hudi
How to build a streaming Lakehouse with Flink, Kafka, and HudiHow to build a streaming Lakehouse with Flink, Kafka, and Hudi
How to build a streaming Lakehouse with Flink, Kafka, and Hudi
Flink Forward
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
High Performance Data Lake with Apache Hudi and Alluxio at T3GoHigh Performance Data Lake with Apache Hudi and Alluxio at T3Go
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
Alluxio, Inc.
 
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
Databricks
 
Building robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
Tathastu.ai
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
HostedbyConfluent
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
StreamNative
 
HBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon 2015: HBase Performance Tuning @ SalesforceHBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon
 
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
HostedbyConfluent
 
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
SF Big Analytics 20190612: Building highly efficient data lakes using Apache ...
Chester Chen
 
Apache Kudu: Technical Deep Dive


Apache Kudu: Technical Deep Dive

Apache Kudu: Technical Deep Dive


Apache Kudu: Technical Deep Dive


Cloudera, Inc.
 
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Hudi: Large-Scale, Near Real-Time Pipelines at Uber with Nishith Agarwal and ...
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Transactional operations in Apache Hive: present and future
Transactional operations in Apache Hive: present and futureTransactional operations in Apache Hive: present and future
Transactional operations in Apache Hive: present and future
DataWorks Summit
 
How to build a streaming Lakehouse with Flink, Kafka, and Hudi
How to build a streaming Lakehouse with Flink, Kafka, and HudiHow to build a streaming Lakehouse with Flink, Kafka, and Hudi
How to build a streaming Lakehouse with Flink, Kafka, and Hudi
Flink Forward
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
High Performance Data Lake with Apache Hudi and Alluxio at T3GoHigh Performance Data Lake with Apache Hudi and Alluxio at T3Go
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
Alluxio, Inc.
 
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
ACID ORC, Iceberg, and Delta Lake—An Overview of Table Formats for Large Scal...
Databricks
 
Building robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
Tathastu.ai
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
HostedbyConfluent
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
StreamNative
 
HBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon 2015: HBase Performance Tuning @ SalesforceHBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon
 

Similar to Apache Hudi: The Path Forward (20)

[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
Vinoth Chandar
 
Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017
Vinoth Chandar
 
Bringing OLTP woth OLAP: Lumos on Hadoop
Bringing OLTP woth OLAP: Lumos on HadoopBringing OLTP woth OLAP: Lumos on Hadoop
Bringing OLTP woth OLAP: Lumos on Hadoop
DataWorks Summit
 
Hadoop and object stores can we do it better
Hadoop and object stores  can we do it betterHadoop and object stores  can we do it better
Hadoop and object stores can we do it better
gvernik
 
Hadoop and object stores: Can we do it better?
Hadoop and object stores: Can we do it better?Hadoop and object stores: Can we do it better?
Hadoop and object stores: Can we do it better?
gvernik
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ Pinterest
HBaseCon
 
Scale your Alfresco Solutions
Scale your Alfresco Solutions Scale your Alfresco Solutions
Scale your Alfresco Solutions
Alfresco Software
 
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
nadine39280
 
Hoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoopHoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoop
Prasanna Rajaperumal
 
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
alanfgates
 
Hive & HBase For Transaction Processing
Hive & HBase For Transaction ProcessingHive & HBase For Transaction Processing
Hive & HBase For Transaction Processing
DataWorks Summit
 
Data Modeling in Hadoop - Essentials for building data driven applications
Data Modeling in Hadoop - Essentials for building data driven applicationsData Modeling in Hadoop - Essentials for building data driven applications
Data Modeling in Hadoop - Essentials for building data driven applications
Maloy Manna, PMP®
 
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Bhupesh Bansal
 
Hadoop and Voldemort @ LinkedIn
Hadoop and Voldemort @ LinkedInHadoop and Voldemort @ LinkedIn
Hadoop and Voldemort @ LinkedIn
Hadoop User Group
 
Optimizing Big Data to run in the Public Cloud
Optimizing Big Data to run in the Public CloudOptimizing Big Data to run in the Public Cloud
Optimizing Big Data to run in the Public Cloud
Qubole
 
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark StreamingNear Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Dibyendu Bhattacharya
 
Apache Flink and Apache Hudi.pdf
Apache Flink and Apache Hudi.pdfApache Flink and Apache Hudi.pdf
Apache Flink and Apache Hudi.pdf
dogma28
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 
Apache Marmotta - Introduction
Apache Marmotta - IntroductionApache Marmotta - Introduction
Apache Marmotta - Introduction
Sebastian Schaffert
 
Overview of MongoDB and Other Non-Relational Databases
Overview of MongoDB and Other Non-Relational DatabasesOverview of MongoDB and Other Non-Relational Databases
Overview of MongoDB and Other Non-Relational Databases
Andrew Kandels
 
[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
[Pulsar summit na 21] Change Data Capture To Data Lakes Using Apache Pulsar/Hudi
Vinoth Chandar
 
Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017
Vinoth Chandar
 
Bringing OLTP woth OLAP: Lumos on Hadoop
Bringing OLTP woth OLAP: Lumos on HadoopBringing OLTP woth OLAP: Lumos on Hadoop
Bringing OLTP woth OLAP: Lumos on Hadoop
DataWorks Summit
 
Hadoop and object stores can we do it better
Hadoop and object stores  can we do it betterHadoop and object stores  can we do it better
Hadoop and object stores can we do it better
gvernik
 
Hadoop and object stores: Can we do it better?
Hadoop and object stores: Can we do it better?Hadoop and object stores: Can we do it better?
Hadoop and object stores: Can we do it better?
gvernik
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ Pinterest
HBaseCon
 
Scale your Alfresco Solutions
Scale your Alfresco Solutions Scale your Alfresco Solutions
Scale your Alfresco Solutions
Alfresco Software
 
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
A Hudi Live Event: Shaping a Database Experience within the Data Lake with Ap...
nadine39280
 
Hoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoopHoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoop
Prasanna Rajaperumal
 
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
Hive & HBase for Transaction Processing Hadoop Summit EU Apr 2015
alanfgates
 
Hive & HBase For Transaction Processing
Hive & HBase For Transaction ProcessingHive & HBase For Transaction Processing
Hive & HBase For Transaction Processing
DataWorks Summit
 
Data Modeling in Hadoop - Essentials for building data driven applications
Data Modeling in Hadoop - Essentials for building data driven applicationsData Modeling in Hadoop - Essentials for building data driven applications
Data Modeling in Hadoop - Essentials for building data driven applications
Maloy Manna, PMP®
 
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Voldemort & Hadoop @ Linkedin, Hadoop User Group Jan 2010
Bhupesh Bansal
 
Hadoop and Voldemort @ LinkedIn
Hadoop and Voldemort @ LinkedInHadoop and Voldemort @ LinkedIn
Hadoop and Voldemort @ LinkedIn
Hadoop User Group
 
Optimizing Big Data to run in the Public Cloud
Optimizing Big Data to run in the Public CloudOptimizing Big Data to run in the Public Cloud
Optimizing Big Data to run in the Public Cloud
Qubole
 
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark StreamingNear Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Dibyendu Bhattacharya
 
Apache Flink and Apache Hudi.pdf
Apache Flink and Apache Hudi.pdfApache Flink and Apache Hudi.pdf
Apache Flink and Apache Hudi.pdf
dogma28
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 
Overview of MongoDB and Other Non-Relational Databases
Overview of MongoDB and Other Non-Relational DatabasesOverview of MongoDB and Other Non-Relational Databases
Overview of MongoDB and Other Non-Relational Databases
Andrew Kandels
 
Ad

More from Alluxio, Inc. (20)

How Coupang Leverages Distributed Cache to Accelerate ML Model Training
How Coupang Leverages Distributed Cache to Accelerate ML Model TrainingHow Coupang Leverages Distributed Cache to Accelerate ML Model Training
How Coupang Leverages Distributed Cache to Accelerate ML Model Training
Alluxio, Inc.
 
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio, Inc.
 
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
Alluxio, Inc.
 
AI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
AI/ML Infra Meetup | How Uber Optimizes LLM Training and FinetuneAI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
AI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
Alluxio, Inc.
 
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio: Preprocessing, ...
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio:  Preprocessing, ...AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio:  Preprocessing, ...
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio: Preprocessing, ...
Alluxio, Inc.
 
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber ScaleAI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
Alluxio, Inc.
 
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio, Inc.
 
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference StackAI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
Alluxio, Inc.
 
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
Alluxio, Inc.
 
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
Alluxio, Inc.
 
Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio Webinar | Accelerate AI: Alluxio 101Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio, Inc.
 
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AIAI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
Alluxio, Inc.
 
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
Alluxio, Inc.
 
AI/ML Infra Meetup | Big Data and AI, Zoom Developers
AI/ML Infra Meetup | Big Data and AI, Zoom DevelopersAI/ML Infra Meetup | Big Data and AI, Zoom Developers
AI/ML Infra Meetup | Big Data and AI, Zoom Developers
Alluxio, Inc.
 
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
Alluxio, Inc.
 
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio, Inc.
 
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
Alluxio, Inc.
 
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
Alluxio, Inc.
 
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio, Inc.
 
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
Alluxio, Inc.
 
How Coupang Leverages Distributed Cache to Accelerate ML Model Training
How Coupang Leverages Distributed Cache to Accelerate ML Model TrainingHow Coupang Leverages Distributed Cache to Accelerate ML Model Training
How Coupang Leverages Distributed Cache to Accelerate ML Model Training
Alluxio, Inc.
 
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio Webinar | Inside Deepseek 3FS: A Deep Dive into AI-Optimized Distribu...
Alluxio, Inc.
 
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
AI/ML Infra Meetup | Building Production Platform for Large-Scale Recommendat...
Alluxio, Inc.
 
AI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
AI/ML Infra Meetup | How Uber Optimizes LLM Training and FinetuneAI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
AI/ML Infra Meetup | How Uber Optimizes LLM Training and Finetune
Alluxio, Inc.
 
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio: Preprocessing, ...
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio:  Preprocessing, ...AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio:  Preprocessing, ...
AI/ML Infra Meetup | Optimizing ML Data Access with Alluxio: Preprocessing, ...
Alluxio, Inc.
 
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber ScaleAI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
AI/ML Infra Meetup | Deployment, Discovery and Serving of LLMs at Uber Scale
Alluxio, Inc.
 
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What’s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio, Inc.
 
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference StackAI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
AI/ML Infra Meetup | A Faster and More Cost Efficient LLM Inference Stack
Alluxio, Inc.
 
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
AI/ML Infra Meetup | Balancing Cost, Performance, and Scale - Running GPU/CPU...
Alluxio, Inc.
 
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
AI/ML Infra Meetup | RAYvolution - The Last Mile: Mastering AI Deployment wit...
Alluxio, Inc.
 
Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio Webinar | Accelerate AI: Alluxio 101Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio Webinar | Accelerate AI: Alluxio 101
Alluxio, Inc.
 
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AIAI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
AI/ML Infra Meetup | The power of Ray in the era of LLM and multi-modality AI
Alluxio, Inc.
 
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
AI/ML Infra Meetup | Exploring Distributed Caching for Faster GPU Training wi...
Alluxio, Inc.
 
AI/ML Infra Meetup | Big Data and AI, Zoom Developers
AI/ML Infra Meetup | Big Data and AI, Zoom DevelopersAI/ML Infra Meetup | Big Data and AI, Zoom Developers
AI/ML Infra Meetup | Big Data and AI, Zoom Developers
Alluxio, Inc.
 
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
AI/ML Infra Meetup | TorchTitan, One-stop PyTorch native solution for product...
Alluxio, Inc.
 
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio Webinar | Model Training Across Regions and Clouds – Challenges, Solu...
Alluxio, Inc.
 
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
AI/ML Infra Meetup | Scaling Experimentation Platform in Digital Marketplaces...
Alluxio, Inc.
 
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
AI/ML Infra Meetup | Scaling Vector Databases for E-Commerce Visual Search: A...
Alluxio, Inc.
 
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio Webinar | Optimize, Don't Overspend: Data Caching Strategy for AI Wor...
Alluxio, Inc.
 
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
AI/ML Infra Meetup | Maximizing GPU Efficiency : Optimizing Model Training wi...
Alluxio, Inc.
 
Ad

Recently uploaded (20)

Agentic AI Use Cases using GenAI LLM models
Agentic AI Use Cases using GenAI LLM modelsAgentic AI Use Cases using GenAI LLM models
Agentic AI Use Cases using GenAI LLM models
Manish Chopra
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Xforce Keygen 64-bit AutoCAD 2025 Crack
Xforce Keygen 64-bit AutoCAD 2025  CrackXforce Keygen 64-bit AutoCAD 2025  Crack
Xforce Keygen 64-bit AutoCAD 2025 Crack
usmanhidray
 
Mastering OOP: Understanding the Four Core Pillars
Mastering OOP: Understanding the Four Core PillarsMastering OOP: Understanding the Four Core Pillars
Mastering OOP: Understanding the Four Core Pillars
Marcel David
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Adobe Photoshop CC 2025 Crack Full Serial Key With Latest
Adobe Photoshop CC 2025 Crack Full Serial Key  With LatestAdobe Photoshop CC 2025 Crack Full Serial Key  With Latest
Adobe Photoshop CC 2025 Crack Full Serial Key With Latest
usmanhidray
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Agentic AI Use Cases using GenAI LLM models
Agentic AI Use Cases using GenAI LLM modelsAgentic AI Use Cases using GenAI LLM models
Agentic AI Use Cases using GenAI LLM models
Manish Chopra
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Xforce Keygen 64-bit AutoCAD 2025 Crack
Xforce Keygen 64-bit AutoCAD 2025  CrackXforce Keygen 64-bit AutoCAD 2025  Crack
Xforce Keygen 64-bit AutoCAD 2025 Crack
usmanhidray
 
Mastering OOP: Understanding the Four Core Pillars
Mastering OOP: Understanding the Four Core PillarsMastering OOP: Understanding the Four Core Pillars
Mastering OOP: Understanding the Four Core Pillars
Marcel David
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Adobe Photoshop CC 2025 Crack Full Serial Key With Latest
Adobe Photoshop CC 2025 Crack Full Serial Key  With LatestAdobe Photoshop CC 2025 Crack Full Serial Key  With Latest
Adobe Photoshop CC 2025 Crack Full Serial Key With Latest
usmanhidray
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 

Apache Hudi: The Path Forward

  • 1. Apache Hudi: The Path Forward Vinoth Chandar, Raymond Xu PMC, Apache Hudi
  • 2. Agenda 1) Hudi Intro 2) Table Metadata 3) Caching 4) Community
  • 5. Hudi - the Pioneer Serverless, transactional layer over lakes. Multi-engine, Decoupled storage from engine/compute Introduced notions of Copy-On-Write and Merge-on-Read Change capture on lakes Ideas now heavily borrowed outside.
  • 6. The Hudi Stack Lakes on cheap, scalable Hadoop compatible storage Built on open file and data formats Transactional Database Kernel - Table Format for file layouts, schema, … - Indexing for faster updates/deletes - Built-in “daemons” aka table services - MVCC, OCC Concurrency Control SQL and Programming APIs Platform services and operational tools Universally queryable from popular engines
  • 7. It’s a platform! Both streaming + batch style pipelines - State store for incremental merging intermediate results - Change events like Apache Kafka topics For data lake workloads - Optimized, self-managing data plane - Large scale data processing - Lakehouse? With tightly-integrated components - Loose coupling => too many to integrate - Reduce build out time for data lakes http://hudi.apache.org/blog/2021/07/21/streaming-data-lake-platform
  • 8. Table Format Avro Schema, Evolution rules File groups, reduce merge overhead Timeline => event log, WAL Internal metadata table Ongoing - Schema-on-read i.e drop,renames (RFC-33) - Infinite retention
  • 9. File Formats Base and Delta Log Files - Parquet, Orc, HFile Base files - Avro log files - Encode changes as blocks Ongoing - Parquet log blocks for large batch writes - CSV, unstructured formats - pre-materialization for masking/data privacy
  • 10. Indexes Pluggable, Consistent with txns For upserts, deletes - HBase, External index -> pluggable - Simple, Bloom/Local vs Global Ongoing - RFC-27 Range indexes - Bucketed Index - DynamoDB index - Metadata index - Record level indexing
  • 11. Concurrency Control Hudi did not need multi-writer support - Treat writers and services differently - MVCC, non-blocking - Table services satisfy most needs Hudi now does Optimistic Concurrency Control - File level, timeline consistent - Still MVCC for table services Future/Ongoing - Multi-table transactions - MVCC, fully lock free transactions
  • 12. Writers Incremental & Batch write operations - File sizing, Layout control upon write - Sorting, compression, Index maintenance - Spill handling, Multi-threaded write pipeline Record level merges APIs - Unique keys, composite, - key generators, virtual or physical - partial merges, event-time processing Record level metadata - Arrival and event time, watermarks - Encode source CDC operation
  • 13. Readers Hive, Impala, Presto, Spark, Trino, Redshift Use engine’s native readers First class support for incremental queries Flexibility - snapshot vs read-optimized Future - Flexible change stream data models. - Snowflake/BigQuery external tables
  • 14. Table Services Self managing database runtime Table services know each other - E.g avoid duplicate schedules - E.g skip compacting files being clustered Cleaning (committed/uncommitted), archival, clustering, compaction, .. Services can be run continuously or scheduled
  • 15. Platform Services DeltaStreamer/FlinkStreamer ingest/ETL utility Deliver Commit notifications Kafka Connect Sink Data Quality checkers Snapshot, Restore, Export, Import
  • 16. Table Metadata Current choices, Ongoing work, Future plans
  • 17. What qualifies as table metadata? Schema - Columns names/types, keys, partitioning, evolution/versions - Typically small, < 1MB per version. Files/Objects - Length, paths, URIs - 2M objects => 10s of MBs Stats - Min, Max, Nulls etc, Per col Per file - 2M objects => 100+ of MBs Redo Logs - Changes to metadata => writes, rollbacks, table optimizations. - Committing (200kb) every minute for a year => ~100 GB Indexes? - Remember Stats != Index, They can be much bigger.
  • 18. How’s this stored in Hudi, today? Schema - Stored within the redo log, consistent with table changes. - Synced out to different meta-stores, post commit Files/Objects - Obtained from an internal metadata table partition `files` - Or just by listing storage - sometimes it’s faster! Redo Logs - As an event log in the timeline folder “.hoodie” - Archived out, once transactions/table operations complete/expire. Stats - We don’t. Yet. Fetch from file footers. - Again sometimes faster if parallelized, even on cloud storage.
  • 19. RFC-27 (Ongoing): Flat Files are not cool Scaling file stats for high scale writing - 65536 files (1TB data, stored as 16MB small files) - 100 columns, 6.5M stat entries - O(total_cols_tracked_in_table) - Slow, 10s of seconds. Range reads to the rescue! - O(num_cols_in_query) performace - Interval trees with smart skipping
  • 20. The Hudi Timeline server Metadata need efficient serving, caching - Not just efficient storage Responsibilities - Cache file listings across executors - Amortize access to metadata table - Performant uncommitted file cleanup Incremental sync - Streaming/continuous writes - Lazy refreshing of timeline S3 Baseline: listing p90 - 1sec (10k files), - 10 sec (100K files) Timeline Server: 1-10 ms! File-backed metadata: ~1 second!
  • 21. Extending the Timeline Server New APIs - Serve also stats, redo log information. - Locking APIs Let’s make a cluster! - Shard servers by table/db - Pluggable backing storage - Local DB w/ recovery/checkpointing - Remote DB with newSQL/transactional storage
  • 22. Cache Basic Idea, Design Considerations
  • 23. Basic Idea Problems - Frequent commits => small objects / blocks => I/O costly - File System / Block level caching not very effective base file b @ t1 base file b’ @ t2 log file 1 for b log file 2 for b log file 1 for b’ log file 2 for b’ Time Hudi FileGroup log file 3 for b’ Hudi FileGroup fits caching - Smallest unit to compact - Size properly to fit cache store - Cache compacted data for real-time views => save computation
  • 24. Design Considerations Refresh-Ahead - Works with Change-Data-Capture scenario - Micro-compact FileGroup and save in cache Cache base file b log file 1 for b log file 2 for b compacted Change-Data-Capture Refresh-Ahead Read-Through - Driven by usage, on-demand computation - LRU or LFU Query I/O Read-Through
  • 25. Design Considerations FileGroup consistent hashing - Each FileGroup has a unique ID - Work with distributed cache servers Cache Node A FileGroup Query I/O Cache Node B FileGroup FileGroup Coordinator (Timeline server?) Query I/O Lake Storage Cache (e.g. Alluxio) Transactionality - Only committed files can be cached - Rollback include cache invalidation Pluggable Caching Layer - Define APIs for pluggable caching implementations
  • 26. Community Adoption, Operating the Apache way, Ongoing work
  • 27. How we roll? Friendly and diverse community - Open and Collaborative - 20+ PMCs/Committers from 10+ organizations Developers - Propose new RFCs (design docs) - Dev list discussions, JIRA for issue tracking. Users - Weekly community on-call rotations - Issue triage, bug filing process on Github 1200+ Slack 200+ Contributors 1000+ GH Engagers ~10-20 PRs/week 20+ Committers 10+ PMCs
  • 28. Major Ongoing Works RFC-26: Z-order indexing, Hilbert curves (PR #3330) RFC-27: Data skipping/Range indexing (PR #3475) RFC-29: Hashed Indexing (PR #3173) RFC-32: Kafka Connect Sink for Hudi (Pre-release; available in 0.10.0) RFC-33: Full-schema evolution support (PR #3668) RFC-35: BigQuery integration
  • 29. Major Ongoing Works RFC-20: Error tables (PR #3312) RFC-08: Record level indexing (PR #3508) RFC-15: Synchronous, Multi table Metadata writes (PR #3590) Hudi + Dbt (dbt-labs/dbt-spark/pull/210) PrestoDB/Trino Connectors (Early design)
  • 30. Hudi is broadly adopted outside More at : http://hudi.apache.org/powered-by
  • 31. Engage With Our Community User Docs : https://hudi.apache.org Technical Wiki : https://cwiki.apache.org/confluence/display/HUDI Github : https://github.com/apache/hudi/ Twitter : https://twitter.com/apachehudi Mailing list(s) : [email protected] (send an empty email to subscribe) [email protected] (actual mailing list) Slack : https://join.slack.com/t/apache-hudi/signup