SlideShare a Scribd company logo
S U R I N D E R
2 9 T H J U L Y , 2 0 1 6
In-Memory Data Fabric
Apache Ignite 1.5
Data Fabric
Introduction
 A collection of independent, well-integrated, in-
memory components
 high-performance, integrated and distributed in-
memory platform
 transacting on large-scale data sets in real-time
 faster than possible with traditional disk-based
or flash technologies
Data Grid
 Distributed In-Memory
Caching
 Implements JCache (JSR
107)
 Distributed In-Memory
Transactions
 Data Consistency
 Tiered Off-Heap Storage
 Distributed ANSI-99
SQL Queries with
support for Joins
Keep required backup
Everyone knows
everything
Cache Modes
Cache Queries…
 Scan Query : return data matching BiPredicate
 Predicate sent to each node,
 Node scan its cache
 Data consolidated by requested node
 Sql Query : load data based on sql given
 Needs indexing to be enabled
 Registering indexing in config
 Annotations for fields visibility
 H2 Console for debugging
 Text Query : Query cache object on given value
 TextQuery txt = new TextQuery(Person.class, "Master Degree");
Cache Queries contd..
 Continuous Query : listens to change in data that fall
into filter
 Initial Query(any of fro previous slide)
 Remote Filter : evaluate the key on primary node to notify
local listener about the changes
 Local Listener : Perform the intended task when it get
notification about the change in data.
Off Heap Memory
 data can be stored and moved between on-
heap, off-heap, and swap space
 On Heap Tiered : stores on heap, evict to off heap
and then may evict to swap space(default mode)
 Off Heap Tiered : bypass on heap, may evict to swap
space
 Off Heap Values : Keys On heap and values off
Heap.
 Useful when keys are small and values are huge
 Swap Space : Disk space to evict data exceeding on
heap and off heap
Eviction Policies
 LRU : recommended when in doubt
 FIFO : it ignores the element access order
 Random
 Randomly evict any element
 Used for debugging
 Not beneficial when data fits in memory
Persistent Store
 CacheStore implements cacheLoader and
cacheWriter from JCache
 Read through
 Write through
 Write behind
 Works behind the cache API’s
Data Rebalancing
 Used when new node join the grid
 Possibly more backups than configured in such scenarios
 Rebalance Modes
 SYNC: cache calls blocked until rebalancing is completed
 ASYNC: rebalancing happen in background. Cache respond immediately
 NONE : No rebalancing, cache loaded on demand when required or
explicitly loading
Questions
Apache ignite Datagrid
Ad

More Related Content

What's hot (20)

Data Engineering Quick Guide
Data Engineering Quick GuideData Engineering Quick Guide
Data Engineering Quick Guide
Asim Jalis
 
Introducing Kudu
Introducing KuduIntroducing Kudu
Introducing Kudu
Jeremy Beard
 
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming dataUsing Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Mike Percy
 
HUG August 2010: Best practices
HUG August 2010: Best practicesHUG August 2010: Best practices
HUG August 2010: Best practices
Hadoop User Group
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache Kudu
Jeff Holoman
 
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Spark Summit
 
A brave new world in mutable big data relational storage (Strata NYC 2017)
A brave new world in mutable big data  relational storage (Strata NYC 2017)A brave new world in mutable big data  relational storage (Strata NYC 2017)
A brave new world in mutable big data relational storage (Strata NYC 2017)
Todd Lipcon
 
Disaster Recovery and Cloud Migration for your Apache Hive Warehouse
Disaster Recovery and Cloud Migration for your Apache Hive WarehouseDisaster Recovery and Cloud Migration for your Apache Hive Warehouse
Disaster Recovery and Cloud Migration for your Apache Hive Warehouse
DataWorks Summit
 
Exponea - Kafka and Hadoop as components of architecture
Exponea  - Kafka and Hadoop as components of architectureExponea  - Kafka and Hadoop as components of architecture
Exponea - Kafka and Hadoop as components of architecture
MartinStrycek
 
Building Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Building Effective Near-Real-Time Analytics with Spark Streaming and KuduBuilding Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Building Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Jeremy Beard
 
Intro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application MeetupIntro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application Meetup
Mike Percy
 
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark Summit
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
HPE Keynote Hadoop Summit San Jose 2016
HPE Keynote Hadoop Summit San Jose 2016HPE Keynote Hadoop Summit San Jose 2016
HPE Keynote Hadoop Summit San Jose 2016
DataWorks Summit/Hadoop Summit
 
Interactive SQL-on-Hadoop and JethroData
Interactive SQL-on-Hadoop and JethroDataInteractive SQL-on-Hadoop and JethroData
Interactive SQL-on-Hadoop and JethroData
Ofir Manor
 
Introduction to Hadoop
Introduction to HadoopIntroduction to Hadoop
Introduction to Hadoop
Dr. C.V. Suresh Babu
 
Dancing elephants - efficiently working with object stores from Apache Spark ...
Dancing elephants - efficiently working with object stores from Apache Spark ...Dancing elephants - efficiently working with object stores from Apache Spark ...
Dancing elephants - efficiently working with object stores from Apache Spark ...
DataWorks Summit
 
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Databricks
 
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Hadoop / Spark Conference Japan
 
High concurrency,
Low latency analytics
using Spark/Kudu
 High concurrency,
Low latency analytics
using Spark/Kudu High concurrency,
Low latency analytics
using Spark/Kudu
High concurrency,
Low latency analytics
using Spark/Kudu
Chris George
 
Data Engineering Quick Guide
Data Engineering Quick GuideData Engineering Quick Guide
Data Engineering Quick Guide
Asim Jalis
 
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming dataUsing Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Mike Percy
 
HUG August 2010: Best practices
HUG August 2010: Best practicesHUG August 2010: Best practices
HUG August 2010: Best practices
Hadoop User Group
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache Kudu
Jeff Holoman
 
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Solving Real Problems with Apache Spark: Archiving, E-Discovery, and Supervis...
Spark Summit
 
A brave new world in mutable big data relational storage (Strata NYC 2017)
A brave new world in mutable big data  relational storage (Strata NYC 2017)A brave new world in mutable big data  relational storage (Strata NYC 2017)
A brave new world in mutable big data relational storage (Strata NYC 2017)
Todd Lipcon
 
Disaster Recovery and Cloud Migration for your Apache Hive Warehouse
Disaster Recovery and Cloud Migration for your Apache Hive WarehouseDisaster Recovery and Cloud Migration for your Apache Hive Warehouse
Disaster Recovery and Cloud Migration for your Apache Hive Warehouse
DataWorks Summit
 
Exponea - Kafka and Hadoop as components of architecture
Exponea  - Kafka and Hadoop as components of architectureExponea  - Kafka and Hadoop as components of architecture
Exponea - Kafka and Hadoop as components of architecture
MartinStrycek
 
Building Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Building Effective Near-Real-Time Analytics with Spark Streaming and KuduBuilding Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Building Effective Near-Real-Time Analytics with Spark Streaming and Kudu
Jeremy Beard
 
Intro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application MeetupIntro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application Meetup
Mike Percy
 
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark and Object Stores —What You Need to Know: Spark Summit East talk by Ste...
Spark Summit
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
Interactive SQL-on-Hadoop and JethroData
Interactive SQL-on-Hadoop and JethroDataInteractive SQL-on-Hadoop and JethroData
Interactive SQL-on-Hadoop and JethroData
Ofir Manor
 
Dancing elephants - efficiently working with object stores from Apache Spark ...
Dancing elephants - efficiently working with object stores from Apache Spark ...Dancing elephants - efficiently working with object stores from Apache Spark ...
Dancing elephants - efficiently working with object stores from Apache Spark ...
DataWorks Summit
 
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Databricks
 
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Hadoop / Spark Conference Japan
 
High concurrency,
Low latency analytics
using Spark/Kudu
 High concurrency,
Low latency analytics
using Spark/Kudu High concurrency,
Low latency analytics
using Spark/Kudu
High concurrency,
Low latency analytics
using Spark/Kudu
Chris George
 

Viewers also liked (20)

Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
DataStax
 
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing HubIMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
In-Memory Computing Summit
 
Processamento em Big Data
Processamento em Big DataProcessamento em Big Data
Processamento em Big Data
Luiz Henrique Zambom Santana
 
Data Grids and Data Caching
Data Grids and Data CachingData Grids and Data Caching
Data Grids and Data Caching
Galder Zamarreño
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
scale14x-bigtop-overview-roadmap
scale14x-bigtop-overview-roadmapscale14x-bigtop-overview-roadmap
scale14x-bigtop-overview-roadmap
Nate D'Amico
 
In Memory Data Grids, Demystified!
In Memory Data Grids, Demystified! In Memory Data Grids, Demystified!
In Memory Data Grids, Demystified!
Uri Cohen
 
In memory grids IMDG
In memory grids IMDGIn memory grids IMDG
In memory grids IMDG
Prateek Jain
 
Data Grids vs Databases
Data Grids vs DatabasesData Grids vs Databases
Data Grids vs Databases
Galder Zamarreño
 
Apache Cassandra Ignite Presentation
Apache Cassandra Ignite PresentationApache Cassandra Ignite Presentation
Apache Cassandra Ignite Presentation
Jared Winick
 
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
In-Memory Computing Summit
 
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Christian Tzolov
 
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Manik Surtani
 
JBoss Community Introduction
JBoss Community IntroductionJBoss Community Introduction
JBoss Community Introduction
jbugkorea
 
Архитектура Apache Ignite .NET
Архитектура Apache Ignite .NETАрхитектура Apache Ignite .NET
Архитектура Apache Ignite .NET
Mikhail Shcherbakov
 
Building Wall St Risk Systems with Apache Geode
Building Wall St Risk Systems with Apache GeodeBuilding Wall St Risk Systems with Apache Geode
Building Wall St Risk Systems with Apache Geode
Andre Langevin
 
Infinspan: In-memory data grid meets NoSQL
Infinspan: In-memory data grid meets NoSQLInfinspan: In-memory data grid meets NoSQL
Infinspan: In-memory data grid meets NoSQL
Manik Surtani
 
Hacking Infinispan: the new open source data grid meets NoSQL
Hacking Infinispan: the new open source data grid meets NoSQLHacking Infinispan: the new open source data grid meets NoSQL
Hacking Infinispan: the new open source data grid meets NoSQL
Codemotion
 
Apache Geode - The First Six Months
Apache Geode -  The First Six MonthsApache Geode -  The First Six Months
Apache Geode - The First Six Months
Anthony Baker
 
Infinispan Servers: Beyond peer-to-peer data grids
Infinispan Servers: Beyond peer-to-peer data gridsInfinispan Servers: Beyond peer-to-peer data grids
Infinispan Servers: Beyond peer-to-peer data grids
Galder Zamarreño
 
Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
Fast, In-Memory SQL on Apache Cassandra with Apache Ignite (Rachel Pedreschi,...
DataStax
 
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing HubIMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
In-Memory Computing Summit
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
scale14x-bigtop-overview-roadmap
scale14x-bigtop-overview-roadmapscale14x-bigtop-overview-roadmap
scale14x-bigtop-overview-roadmap
Nate D'Amico
 
In Memory Data Grids, Demystified!
In Memory Data Grids, Demystified! In Memory Data Grids, Demystified!
In Memory Data Grids, Demystified!
Uri Cohen
 
In memory grids IMDG
In memory grids IMDGIn memory grids IMDG
In memory grids IMDG
Prateek Jain
 
Apache Cassandra Ignite Presentation
Apache Cassandra Ignite PresentationApache Cassandra Ignite Presentation
Apache Cassandra Ignite Presentation
Jared Winick
 
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
IMCSummite 2016 Breakout - Nikita Ivanov - Apache Ignite 2.0 Towards a Conver...
In-Memory Computing Summit
 
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Apache conbigdata2015 christiantzolov-federated sql on hadoop and beyond- lev...
Christian Tzolov
 
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Infinispan, Data Grids, NoSQL, Cloud Storage and JSR 347
Manik Surtani
 
JBoss Community Introduction
JBoss Community IntroductionJBoss Community Introduction
JBoss Community Introduction
jbugkorea
 
Архитектура Apache Ignite .NET
Архитектура Apache Ignite .NETАрхитектура Apache Ignite .NET
Архитектура Apache Ignite .NET
Mikhail Shcherbakov
 
Building Wall St Risk Systems with Apache Geode
Building Wall St Risk Systems with Apache GeodeBuilding Wall St Risk Systems with Apache Geode
Building Wall St Risk Systems with Apache Geode
Andre Langevin
 
Infinspan: In-memory data grid meets NoSQL
Infinspan: In-memory data grid meets NoSQLInfinspan: In-memory data grid meets NoSQL
Infinspan: In-memory data grid meets NoSQL
Manik Surtani
 
Hacking Infinispan: the new open source data grid meets NoSQL
Hacking Infinispan: the new open source data grid meets NoSQLHacking Infinispan: the new open source data grid meets NoSQL
Hacking Infinispan: the new open source data grid meets NoSQL
Codemotion
 
Apache Geode - The First Six Months
Apache Geode -  The First Six MonthsApache Geode -  The First Six Months
Apache Geode - The First Six Months
Anthony Baker
 
Infinispan Servers: Beyond peer-to-peer data grids
Infinispan Servers: Beyond peer-to-peer data gridsInfinispan Servers: Beyond peer-to-peer data grids
Infinispan Servers: Beyond peer-to-peer data grids
Galder Zamarreño
 
Ad

Similar to Apache ignite Datagrid (20)

Apache ignite as in-memory computing platform
Apache ignite as in-memory computing platformApache ignite as in-memory computing platform
Apache ignite as in-memory computing platform
Surinder Mehra
 
Less is More: 2X Storage Efficiency with HDFS Erasure Coding
Less is More: 2X Storage Efficiency with HDFS Erasure CodingLess is More: 2X Storage Efficiency with HDFS Erasure Coding
Less is More: 2X Storage Efficiency with HDFS Erasure Coding
Zhe Zhang
 
5266732.ppt
5266732.ppt5266732.ppt
5266732.ppt
hothyfa
 
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
Fred de Villamil
 
JCache Using JCache
JCache Using JCacheJCache Using JCache
JCache Using JCache
日本Javaユーザーグループ
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Slide 2 collecting, storing and analyzing big data
Slide 2 collecting, storing and analyzing big dataSlide 2 collecting, storing and analyzing big data
Slide 2 collecting, storing and analyzing big data
Trieu Nguyen
 
Cpu caching concepts mr mahesh
Cpu caching concepts mr maheshCpu caching concepts mr mahesh
Cpu caching concepts mr mahesh
Faridabad
 
Real time analytics using Hadoop and Elasticsearch
Real time analytics using Hadoop and ElasticsearchReal time analytics using Hadoop and Elasticsearch
Real time analytics using Hadoop and Elasticsearch
Abhishek Andhavarapu
 
Vault2016
Vault2016Vault2016
Vault2016
Dan Lambright
 
Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance
DataWorks Summit/Hadoop Summit
 
Cassandra - Research Paper Overview
Cassandra - Research Paper OverviewCassandra - Research Paper Overview
Cassandra - Research Paper Overview
sameiralk
 
What is Object storage ?
What is Object storage ?What is Object storage ?
What is Object storage ?
Nabil Kassi
 
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Databricks
 
Hadoop and Netezza - Co-existence or Competition?
Hadoop and Netezza - Co-existence or Competition?Hadoop and Netezza - Co-existence or Competition?
Hadoop and Netezza - Co-existence or Competition?
Krishnan Parasuraman
 
Zero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsightZero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsight
Ashish Thapliyal
 
Repository performance tuning
Repository performance tuningRepository performance tuning
Repository performance tuning
Jukka Zitting
 
Netapp Deduplication concepts
Netapp Deduplication conceptsNetapp Deduplication concepts
Netapp Deduplication concepts
Saroj Sahu
 
Big data with HDFS and Mapreduce
Big data  with HDFS and MapreduceBig data  with HDFS and Mapreduce
Big data with HDFS and Mapreduce
senthil0809
 
No sql databases
No sql databasesNo sql databases
No sql databases
Ashish Kumar Thakur
 
Apache ignite as in-memory computing platform
Apache ignite as in-memory computing platformApache ignite as in-memory computing platform
Apache ignite as in-memory computing platform
Surinder Mehra
 
Less is More: 2X Storage Efficiency with HDFS Erasure Coding
Less is More: 2X Storage Efficiency with HDFS Erasure CodingLess is More: 2X Storage Efficiency with HDFS Erasure Coding
Less is More: 2X Storage Efficiency with HDFS Erasure Coding
Zhe Zhang
 
5266732.ppt
5266732.ppt5266732.ppt
5266732.ppt
hothyfa
 
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
SUE 2018 - Migrating a 130TB Cluster from Elasticsearch 2 to 5 in 20 Hours Wi...
Fred de Villamil
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Slide 2 collecting, storing and analyzing big data
Slide 2 collecting, storing and analyzing big dataSlide 2 collecting, storing and analyzing big data
Slide 2 collecting, storing and analyzing big data
Trieu Nguyen
 
Cpu caching concepts mr mahesh
Cpu caching concepts mr maheshCpu caching concepts mr mahesh
Cpu caching concepts mr mahesh
Faridabad
 
Real time analytics using Hadoop and Elasticsearch
Real time analytics using Hadoop and ElasticsearchReal time analytics using Hadoop and Elasticsearch
Real time analytics using Hadoop and Elasticsearch
Abhishek Andhavarapu
 
Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance
DataWorks Summit/Hadoop Summit
 
Cassandra - Research Paper Overview
Cassandra - Research Paper OverviewCassandra - Research Paper Overview
Cassandra - Research Paper Overview
sameiralk
 
What is Object storage ?
What is Object storage ?What is Object storage ?
What is Object storage ?
Nabil Kassi
 
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While...
Databricks
 
Hadoop and Netezza - Co-existence or Competition?
Hadoop and Netezza - Co-existence or Competition?Hadoop and Netezza - Co-existence or Competition?
Hadoop and Netezza - Co-existence or Competition?
Krishnan Parasuraman
 
Zero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsightZero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsight
Ashish Thapliyal
 
Repository performance tuning
Repository performance tuningRepository performance tuning
Repository performance tuning
Jukka Zitting
 
Netapp Deduplication concepts
Netapp Deduplication conceptsNetapp Deduplication concepts
Netapp Deduplication concepts
Saroj Sahu
 
Big data with HDFS and Mapreduce
Big data  with HDFS and MapreduceBig data  with HDFS and Mapreduce
Big data with HDFS and Mapreduce
senthil0809
 
Ad

Recently uploaded (20)

LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Expand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchangeExpand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchange
Fexle Services Pvt. Ltd.
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Expand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchangeExpand your AI adoption with AgentExchange
Expand your AI adoption with AgentExchange
Fexle Services Pvt. Ltd.
 

Apache ignite Datagrid

  • 1. S U R I N D E R 2 9 T H J U L Y , 2 0 1 6 In-Memory Data Fabric Apache Ignite 1.5
  • 3. Introduction  A collection of independent, well-integrated, in- memory components  high-performance, integrated and distributed in- memory platform  transacting on large-scale data sets in real-time  faster than possible with traditional disk-based or flash technologies
  • 4. Data Grid  Distributed In-Memory Caching  Implements JCache (JSR 107)  Distributed In-Memory Transactions  Data Consistency  Tiered Off-Heap Storage  Distributed ANSI-99 SQL Queries with support for Joins
  • 5. Keep required backup Everyone knows everything Cache Modes
  • 6. Cache Queries…  Scan Query : return data matching BiPredicate  Predicate sent to each node,  Node scan its cache  Data consolidated by requested node  Sql Query : load data based on sql given  Needs indexing to be enabled  Registering indexing in config  Annotations for fields visibility  H2 Console for debugging  Text Query : Query cache object on given value  TextQuery txt = new TextQuery(Person.class, "Master Degree");
  • 7. Cache Queries contd..  Continuous Query : listens to change in data that fall into filter  Initial Query(any of fro previous slide)  Remote Filter : evaluate the key on primary node to notify local listener about the changes  Local Listener : Perform the intended task when it get notification about the change in data.
  • 8. Off Heap Memory  data can be stored and moved between on- heap, off-heap, and swap space  On Heap Tiered : stores on heap, evict to off heap and then may evict to swap space(default mode)  Off Heap Tiered : bypass on heap, may evict to swap space  Off Heap Values : Keys On heap and values off Heap.  Useful when keys are small and values are huge  Swap Space : Disk space to evict data exceeding on heap and off heap
  • 9. Eviction Policies  LRU : recommended when in doubt  FIFO : it ignores the element access order  Random  Randomly evict any element  Used for debugging  Not beneficial when data fits in memory
  • 10. Persistent Store  CacheStore implements cacheLoader and cacheWriter from JCache  Read through  Write through  Write behind  Works behind the cache API’s
  • 11. Data Rebalancing  Used when new node join the grid  Possibly more backups than configured in such scenarios  Rebalance Modes  SYNC: cache calls blocked until rebalancing is completed  ASYNC: rebalancing happen in background. Cache respond immediately  NONE : No rebalancing, cache loaded on demand when required or explicitly loading

Editor's Notes

  • #5: 1. ability to add nodes on demand in real-time. 2. supports local, replicated, and partitioned data sets and allows to freely cross query between these data sets using standard SQL syntax 3. As long as your cluster is alive, Ignite will guarantee that the data between different cluster nodes will always remain consistent regardless of crashes or topology changes
  • #6: LocalMode : useful when data is not distributed to other caches. Ideal where data can be periodically refreshed at expiration frequency. By default, backups are turned off for better performance <property name="cacheMode" value="PARTITIONED"/